Numpy
To access the array underlying a DataFrame or Series, use the to_numpy method.

Note: to_numpy() not return the copy of series, the change on the .to_numpy will change the
original series.

np.random.random(N) returnsan array containing N numbers selected uniformly at random
from the interval [0, 1).

np.clip(series/number, lower bound, upper bound)

np.count_nonzero() # count non zero

np.percentile(arr, 95) # Find the 95% percentile of arr

np.random.choice(['H', 'T'], p=[0.5, 0.5], size=114)

# Faster simulation; 2D Array

np.random.choice(outcome, p_for each, size=(number_ repetition, num each trial))
np.random.multinomial(10, [0.1, 0.2, 0.3])

np.random.permutation (ser/arr)

Series

ser.plot(kind=, density: bins=, title=)

ser.apply(func) # Apply funciton or lambda to series

ser.to_numpy() # BZarraytha¥FEseries
ser.astype(int) # Change type of series
# Note
ser.unique()

some have special characters that can't typechange directly

ser.nunique() # number of unique values of this column
ser.value_counts() # count the number of each unique values

ser.describe() # describtion about mean, max, min, std, ect; also work for df

ser.str.split().str[0] #accessing every lst element strip
ser.replace({dict}) # replace with dictionary

ser.str.zfill(len) #adds zeros to the start until total reaches length
ser.isna() #element-wise

ser.dropna() #returns a new Series with all null entries removed
ser.rename(new_name) # change the name of series

ser.rename (lambda

x ** 2) # function, changes labels
ser.rename({1: 3, 2: 5}) # mapping, changes labels or index
ser.diff() # Difference with previous

ser.isin([values]) #if elements in Series are contained in values
ser.index # Get all index of series as index array
ser.index[index_num] # The index value of that index position
ser.loc[index] # find the value of that index

ser.iloc[num] # find the value of the num th row (Start from 0)

Pandas

Initialize Series and DataFrame

# Create Series with dictionary

pd.Series({'a': 10, 'b': 23, 'c': 45, 'd': 53, + 87), name='people’) # name is optional
# Create DataFrame with dictionary
column_dict = {'Name': ['Granger, Hermione', 'Potter, Harry', 'Weasley, Ron', 'Longbottom, Neville'],
'PID': ['A13245986', 'A17645384', 'A32438694', 'A52342436'],
CLVL': (1, 1, 1, 11}

enrollments = pd.DataFrame(column_dict)
# Initialize an empty DataFrame with N rows

new_df = pd.DataFrame(index=range(N))

df.index and df.columns
Axis 0 refers to the index; YAEELE . sum(axis=0)

Axis 1 refers to the column #B[EE4E .sun(axis=1)

Get rows/columns

# Returns a Series

enrollments( 'Name']

# Returns a DataFrame; Select multiple columns

enrollments(['Name', 'PID']]

# Get multiple rows

enrollments.loc([1, 2]]

# Rows where Name includes ‘on’

enrollments.loc[enrollments[ 'Name'].str.contains('on')]

df.loc[<row selector>, <column selector>] # select the rows and columns as the same time
df.loc[(rowl, row2]] # Select multiple rows

df.loc :] # select all rows and columns

df.loc[namel:name2, coll: col2] # select rows and columns within the names and cols, inclusive

df .iloc[num_rowl:num row2, num_coll:num col2] # Can't put specific name, exclusive

df.loc[index_of_insert] = [row to append] # Add the row to the last row by loc

HPLITBERHERR . Loc

11— 44572kiAget column (need column name), .1loc(] B—MEARERIArow (row index)
at(]: Boolean arrays always select rows by default.

.iloc[] Without know the label of row, ZER&NBindexfIER T, EHE N columnZESBLHHE
df.loc[row, column] ; dffinputl2ERFF&HIrow index, AZcolumns

.iloc[-1] returns the last row of table

The dtypes attribute (of both Series and DataFrames) describes the data type of each column.
The to_numpy method, when used on a Series, returns an array in which all values are of the data type specified by dtypes .

The to_numpy method, when used on a DataFrame, returns a multi-dimensional array of type object, unless all columns in the
DataFrame are homogenous.

The head / tail methods return the first/last few rows (the default is 5).

Messy Data

Kinds of data

Numerical
aka Quantitative

Categorical
aka Qualitative

Discrete Continuous rdinal Nominal
Vhols bers; can be Categories with some. ries with no
cour often measured. i i inherent ordering.
e.g number of e.g price, eghighestdegree  e.g colors, political
siblings, number of  temperature, GPA, attained, Yelp stars  affiliation

UCSD students weight

Note that numerical variables can be stored as strings, and
categorical variables can be stored as numbers!

Replace

.replace({‘original': 'replace’, 'original2’:'replace2’}) # use dictionary to replace multiple columns
df(column].replace() # works for str column
df = df.replace({column: dict_for_replace})
df[column].str.contians() # if the method is a string method, need ".str. e.g: "index(), isdecimal(),

isnumeric(), islower(), split(), strip(), upper()
pd.to_numeric(students( 'DSC 80 Final Grade'], errors='coerce’)

Careful when using errors='coerce, some information may be lost when using it

Use .str to access the str attributes of series.

Unfaithful data and outlier

Unfaithful data are data that don't accurately represent the data generating process.

Outliers are "unusual” observations, unlike the rest of the data. They may be real, or they may be unfaithful.
.describe() : see basic numerical information about a Series/DataFrame.

.info() : see data types and the number of missing values in a DataFrame.

.value_counts() : see the distribution of a categorical variable.

.plot(kind="hist"') : plot the distribution of a numerical variable.
NaN

type(np.NaN) is float, pay attention to type coercion!

np.Nan == np.Nan # but there are not equal -> False

isnull() or isna() to find the np.NaN or None

The result of any comparison (: <, >) with np.NaN is False.

df.size or ser.size # size will count null; # df.size will give back all HEF¥E
df.count() or ser.count() # count will not count null

df.mean() or ser.mean() # Mean will not count null

df[column].count() / df[column].size # Calculate the proportion of non NaN of this column

df.dropna() # In place # Return Null; drop rows contains at least one null values

df .dropna(how="any') # drop all rows contians np.NaN

df .dropna(how="all') # .dropna() not mean you drop all of your rows containing NaN

df .dropna(axis=1) # drops columns contains at least one null values

df .dropna(subset=['A', 'B']) # Only consider column A and B

df.fillna(val) # fills null entries with the value val

df.fillna(dict) # fills null entries using a dictionary dict of column/row values.
df.fillna(method='bfill') # f£ill null entries using neighboring non-null entries, back fill
df.fillna(method='ffill') # forward £ill (pull up one to down

df.£illna({col: val})

# Another way of doing the same thing #### The lambda takes in each column

df .apply(lambda x: x.fillna(x.mean()), axis=0)

Groupby (split, apply, and combine)

The groupby method can often produce results using just a single pass over the data, updating the sum, mean, count, min, or
other aggregate for each group along the way.

-apply ()

It accepts a group as a DataFrame/Series, and can return a DataFrame, Series, or scalar

FAapply#i~column, thEILAIAmultiple columns; Cross column

-applymap()

Elementwise

-transform()

Atransformation returns a DataFrame or Series of the same size; result will be the same length as original DataFrame
Régtransform&column

penguins.groupby( 'species’) [ 'body_mass_g'].transform(lambda ser: ser - ser.mean())

-agg(

apply some function to each group, and combine the results; result will be the length of the number of groups

# can use multiple functions on a column at the same time
penguins.groupby( ‘species’) .aggregate({'bill_length mm': ‘max', ‘island': ['nunique’, ‘max'1})

Lfilter()
keep only the groups that satisfy a particular condition
penguins.groupby('species’).filter(lambda df: df('bill length mm'].mean() > 39)

Groupby with multiple columns

double_group = penguins.groupby ([ 'species’, 'island'])
penguins.groupby ([ 'species', 'island'], as_index=False).mean() #Shortcut to use reset index
Pivot table

pivot_table = groupby + pivot

df.pivot_table (index=index_col, columns=columns_col, values=values col, aggfunc=func).fillna(0) # As float

# Pivot
moves = pd.DataFrame([ (1, 1, '0'],
@ & S
(@ B i
2, 3, ‘o',
3,1, ‘o',
[ & T
1, columns=['i’, '3', ‘move']) moves

moves.pivot (index='i', columns='j', values='move’).fillna('

The pivot method only reshapes a DataFrame. It does not change any of the values in it (i.e. aggfunc doesn't work with pivot ).
Find the number of penguins per island and species.
penguins.pivot_table(index='island',
columns="'species’,

values='bill _length mm',
aggfunc='count')

species Adelie Chinstrap Gentoo

island

Biscoe 440 NaN 119.0

Dream 55.0 68.0 NaN
Torgersen 47.0 NaN NaN

pson's paradox
Simpson's paradox occurs when grouped data and ungrouped data show opposing trends.

It often happens because there s a hidden factor (i.e. a confounder) within the data that influences resuits.
Conbination of dataFrame
pd.concat () Row-wise combination of data
BRiAEH concat
pd.concat ([section A, section_B], ignore_index=True) # Fix the index

pd.concat ([section A, section B], keys=('Section A', 'Section B']) # keep track of which original DataFrame each
row came from

pd.concat [exams, assignments], axis=1) # columns next to columns; default is axi
If we concatenate two DataFrames that don't share the same column names, NaN s are added in the columns that aren't shared.
©0s.1istdir(dirname) returns a list of the names of the files in the folder

pd..concat only looks at the index when combining rows, not at any other columns.



Merge
If join keys are not specified, all shared columns between the two DataFrames are used by default.

Pay attention to specify which column to merge on, otherwise will merge on all columns

temps.merge(countries, how='outer')
# merge is also a pandas function

pd.merge(temps, countries, how='outer')

exams.merge(overall, left_on='Name', right_on='Student')

‘Student’, suffixes=('_Exam', '_Overall'))

exams.merge(overall, left on='Name', right ol

Inner: keep only matching keys (intersection).

Outer: keeps all keys in both DataFrames (union).

Left: keep all keys in the left DataFrame, whether or not they are in the right DataFrame.

Right: keep all keys in the right DataFrame, whether or not they are in the left DataFrame.
One-to-one joins:

Neither the left DataFrame nor the right DataFrame contained any duplicates in the join key.
Many-to-one joins:

Many-to-one joins are joins where one of the DataFrames contains duplicate values in the join key.
The resulting DataFrame will preserve those duplicate entries as appropriate.

Many-to-many joins:

Many-to-many joins are joins where both DataFrames have duplicate values in the join key.

Hypothesis Testing
Note that we are very careful in saying that we either reject the null or fail to reject the null.

The p-value is the probability, under the assumption the null hypothesis is true, of observing a test statistic equal to our
, or more extreme in the direction of the alternative hypothesis.

observed stati
Difference
The signed difference between the mean/median of two groups; Alternative 731

The unsigned (absolute) difference between the mean/median of two groups; F/distribution51+4 K3
TVD

The total variation distance (TVD) is a test statistic that describes the distance between two categorical distributions.

1
TVD(A,B) = - ai —
5-33
The Total Variation Distance (TVD) of two categorical distributions is the sum of the absolute diferences of their
proportions, all divided by 2
np.sum(np. abs (dist1-dist2)) / 2
Note: Total Variation Distance is only use for comparing two categorical distribution

np.random.multinomial(10, [0.5, 0.5]) # 10 times with [0.5, 0.5] possibility

cer eeq w1, size=(trial))

np. random. multinomial (totol_pop,

If the two distributions are quantitative (numerical), we use as our test statistic the difference in group means or medians.

If the two distributions are qualitative (categorical), we use as our test statistic the total variation distance (TVD).

Permutation Test

Given two observed samples, are they fundamentally different, or could they have been generated by the same process?
In a permutation test, we decide whether two fixed random samples come from the same distribution.

In a permutation test, we generate new data by shuffling group labels.

To test whether two distributions come from the same underlying population distribution.

To create a permutation, either set n=df.shape[0] OF frac=1. smoking_and_birthweight.sample(frac=1)

frac from 0 to 1, give the size of the proportion of the dataFrame

E;

Null hypothesis: In the population, birth weights of smokers and non-smokers have the same distribution. The difference we saw
was due to random chance.

Alternative hypothesis: In the population, babies born to smokers have lower birth weights, on average.
Permutation Test Sample
Null hypothesis: the two sample are from same distribution, the difference is due to random chance

Alternative hypothesis: the two sample are from different distribution. or the one is lower

# Calculate TVD

def tvd_of_groups (df):
cnts = df.pivot_table(index=distribution, columns=category, aggfunc='size')
distr = cnts / cnts.sum()  # Normalized
return distr.diff(axis=1).iloc[:, -1].abs().sum() / 2 # TVD

# Permutation Test Sample Code
# Observed test statistic

observed_difference = (
af
-groupby (' groupby_column')['want_to_shuffled'] .mean()
Ldiff()
.iloc[-1]

)
# Simulation
n_repetitions = 500
differences = []
for _ in range(n_repetitions):
# Step 1: Shuffle the weights
shuffled_column = (
df[ 'want_to_shuffled’]
.sample (frac=1)
.reset_index(drop=True) # Be sure to reset the index!
)
# Step 2: Put them in a DataFrame
shuffled = (
af
.assign(**{'Shuffled column': shuffled_column})
)
# Step 3: Compute the test statistic
group_means = ( shuffled
-groupby ('groupby_column').mean()
.loc[:, 'Shuffled column']
)
difference = group means.diff().iloc[-1]
# Step 4: Store the result
differences.append(difference)
# Calculate p-value, if it tests the whether they from same distribution, diff should be small
pval = (differences >= observed difference).mean()

# Reject the null if pval is very small

The Kolmogorov-Smirnov test statistic

The K-S test statistic measures the similarity between two distributions.

tis defined in terms of the cumulative distribution function (CDF) of a given distribution.

If fx) s a distribution, then the CDF F(x) is the proportion of values in distribution f that are less than or equal to x.
The K-S statistic is roughly defined as the largest difference between two CDFs.

Only use to test whether the two have the same distribution. (Often with graph)

# Other pd method
pd.read_csv()

pd. to_numeric(series, errors='coerce')

df.describe() #count, mean, std, 5 number summary

df.shape or df.size #size: #rowt#col

df.index or df.columns #row/index label (axis=0) & column label (axis=1)

af . rename (index=(}, columns={})

df.sun() #total; df.sum(axis=0) #sum each column; df.sun(axis=1) #sun each row
Qf[‘col’].str.contains ()

df.dtypes #TT8column’'s data type as a series

af.mean() #mean of each col (AIEAEHinean)

df.mean(axis=1) #mean of each rows

df.drop_duplicates (subset=[col]) #REcol H—RiHMAIE

af.assign(*+{'A B': some_lst}) #keyword argumentffcol nameBEAZfE

df.reset_index (drop=True)/sort_index()/set_index() # reset an index of increasing integers

af .value_counts(normalize=True).to_frame() # normalize the data # to_frame(): to DataFrame

af.groupby (key).groups #returns a dictionary that the keys are group names and values are lists of row

labels
af.groupby(key).get_group(key) # returns a df with only the values for the given key
af.groupby () .aggregate([list of functions])

df.groupby().aggregate({'A': 'max', 'B: ‘nunique’})

af.groupby() .transform(lambda ser: ser - ser.mean())

df.groupby().filter(lambda df: df['b'].mean() > 39) # RAFEFRIFMgroup
af.groupby([multiple cols]) # MultiIndexdf.loc[('A’, 'B')] access

df.transpose() /df.T

pd.concat ([dfl, d£2], ignore_index=True, keys=[‘A’, 'B']) #dfl.concat(d£2) vertically
pd.concat ([df1, df2], axis=l) fhorizontally match index

df.sample() or df.sample(n) # sample 1 or n rows
Qf.sample(frac=).reset_index(drop=True) fshuffle, frac = 1

Datetime

pd. Tinestamp() is the pandas equivalent of datetime

pd.to_datetime() OF x. time () CONVrts strings to pd.Timestamp objects.

pd.Timestamp(year=1998, month-11, day=26)
final_start = pd.to_datetime('June 4th, 2022, 11:30aH")

# Other method

datetime.datetine.now() # The time for now

datetime. timedelta(days=3, hours=5) #17 Z/Af(5, measure durations
datetime.datetime.now() . timestamp() #M1970.1. 1FHMET T S0
pd.to_datetime('June 4th, 2022, 11:30AM') # return a Timestamp object, FILAIA
d.Timest. /sec # time-related attributes

Subtracting timestamps yields pd.Timedelta objects

If we create a Series of datetimes with pd. to_datetime , pandas stores them as yet another type: np.datetine64

Missing Values

Missing by design (MD)
Can I determine the missing value exactly by looking at the other columns? &)

Not missing at random (NMAR)
Is there a good reason why the missingness depends on the values themselves? &)

Missing at random (MAR)
Do other columns tell me anything about the likelihood that a value is missing? &)

Missing completely at random (MCAR)
The missingness must not depend on other columns or the values themselves.

Missing by design (MD): Whether or not a value is missing depends entirely on the data in other columns. In other words, if
we can always predict if a value will be missing given the other columns, the data is MD.

« Not missing at random (NMAR, also called NI): The chance that a value is missing depends on the actual missing value!

 Missing at random (MAR): The chance that a value is missing depends on other columns, but not the actual missing value
itself.

 Missing completely at random (MCAR): The chance that a value is missing is completely independent of other columns
and the actual missing value.

Handle Missing Value
Drop Missing value
If the data are MCAR, then dropping the missing values entirely doesn't significantly change the data

If the data are not MCAR, then dropping the missing values will introduce bias. (MCAR is rare)

Likewise Deletion: Dropping entire rows that contain missnig values. .dzopna () . (issue: will delete good data in other columns)

K ion: Filling in missing data with pl. ble values; try not to introduce bias
Imputation with a single value: mean, median, mode. .£illna(df[col].mean()) or median or mode

When data are MCAR and you impute with the mean: mean unbiased and variance decreased

When data are MAR, mean imputation leads to biased estimates of the mean across groups. (biased towards one group.)
Within-group (conditional) Mean Imputation: Filling in missing values based on the columns they depend on

Then, if data MAR, the overall mean remains unbiased but the variance of the dataset is reduced. Correlations increased.

If the column with missing values were dependent on more than one column, use linear regression to predict the missing value.

The new means may be biased low or high according to the original not missing values.

means = df.groupby('c2').mean().to_dict() # For a column cl, conditional on a second column c2
imputed = df['cl’].apply(lambda x: means[x] if pd.isna(x) else x)
Imputation with a single value, using a model: regression, kNN.
Probabilistic imputation by drawing from a distribution (Random) of non-missing data. Variance is preserved.
If a value was never observed in the dataset, it will never be used to fillin a missing value. Solution: Create a histogram (with
np.histogram) to bin the data, then sample from the histogram

If data are MCAR, the resulting mean and variance are unbiased estimates of the true mean and variance.

Extending to the MAR case: draw from conditional empirical distributions.

HTTP Hypertext Transfer Protocol

The request -response model

 Arequest is made by the client. Ger is used to request data from a specified resource.

* Aresponse is returned by the server. osT is used to send data to the server. (send content back to the client in its response.)

Making HTTP requests

From Python, with the requests package.

# GET via requests
import requests

resp = requests.get(url) #return a response object (e.g. <Response [200]>) # 200 means success
resp.text # string that contains the entire response (html) # type(resp.text) -> str
resp.request.url # give the URL link we accessed

resp.status_code # get the status code for this request

resp.ok #check if a request was successful

# If rate of requests is too high, slow down requests between each retry using "time.sleep’
resp.raise for_status # raises an exception when the status code is not-ok.

# POST via requests

post_response = requests.post('https://httpbin.org/post’, data={'name': 'King Triton'})

HTTP status codes

The most common status code is 200 -> no issues. or error(e.g. 404: page not found; 500 internal server error.)



JSON: JavaScript Object Notation

The two main file formats used for storing information on the internet are HTML and JSON.

JSON data types

string: anything inside double quotes.

armay: anything wrappedin [1
null: JSON's empty value, denoted by null

H

object: a collction of key-value pairs (ke dictionaries).

= open(os.path. josn( data’,
fonilytree > Json.163(1)

famiy.tree

nanes “vad,
()

o
“eRiren’s [{"nane’s We',
hane! sy Aunk'
Taren'

fansiy.gson'd, e}

ager:

[naher: “cousin 1, “age’s 301,

e 36, .

eval: stands for "evaluate": eval(‘'4 + 5') >9

bi “eRiliren's [{"nane’s ‘Cousin 2 Ir.", ‘age’s I}

fandly_treel " cnitaren] 0] "ent
n

ren)(01Cage')

F#eMFison: This happened because eval evaluates all parts of the input string as if it were Python code.

import json
json.load(file) or json.loads(str) #

requests.get(url).json() # display in json

APIs and web scraping

ds a JSON file from a file or string

APl requests: just GET/POST requests to a specially maintained URL.

= requests.get('https://pokeapi.co/api/v2/pokemon/squirtle’) # <Response [200]>

r.content # Get the content for this requested URL

33, Cname's “Brother", “age’s 2)1),

We can extract the JSON from this request with the json method (or by passing r.text to json.loads).

r.json()

Scraping

Programmatically "browsing" the web, downloading the source code (HTML) of pages; May not be able to scrap some websites

robots.txt : this file in their root directory, which contains a policy that allows or disallows automatic access to their site.

HTML (HyperText Markup Language)

The anatomy of HTML documents

 HTML document: The totality of markup that makes up a webpage.

* Document Object Model (DOM): The internal aHTML document tree structure.
« HTML element: An object in the DOM, such as a paragraph, header, or tle.
« HTML tags: Markers that denote the start and end of an element, such as <p> and </p> .

Useful tags to know
Element  Description Element Description Element
<heml>  the document <h1>, <h2>, ...  header(s) <>
<div> alogical division of the document  <a> an anchor (hyper-link)  <img>
<span> an in-linelogical division <head> the header <body>

Tags can have attributes, which further specify how to display information on a webpage,

HTML Document

Description
aparagraph
animage

the body

The <div> element is often used as a container for other HTML elements to style them with CSS or to perform operations involving

them using Javascript.

Document Trees

teat data/tects_ext.heal

.
<hea>
<titlespage titlec/titles
/e
<body>
<MISThis 15 a headinge/i>
SpoThis 15 a paragraph.</p>

SPEThLS 13 another paragraph.</p> <title>

</oacy
P

Parsing HTML

Child nodes

<hem1>

<body>
\ v e ]

al> @ @

Beautiful Soup: A BeautifulSoup object represents a node

Heading here

the tree.

soup.children isn't another Beautifulsoup object, but rather something of the form <list_iterator at 0x7£7b0abBe370>

The children attribute returns an iterator so that it doesn't have to load the entire DOM tree in memory.

Note: ichild nodest RE B/ 5R> it %

The soup.descendants attribute traverses a Beautifulsoup tree using depth-first traversal.

Finding elements in a tree and note attributes

import bsd
bs4.Beautifulsoup(html_string)

soup

print(soup.text) # print out beautiful soup of HTML

soup.children #list iterator

soup.find(tag) #first instance of a tag

soup.find(tag).text # the text between the opening and closing tags.

soup. £ind (nams

one, attrs=(}, recursiv

rue, texi

soup.find_all(tag) #list of all instances of a tag
soup.find(tag).get(attri) # gets the value of a tag attribute
soup.find('div').attrs # You can access tags using attribute notation, too.

soup.£ind('div', attrs={'id': 'nav'}) # f£ind the <di

soup.heml.div.hl

soup.html.div.next_sibling.next_sibling.attrs

one, **kwargs) # General

element that has an id attribute equal to

If you scraping a web page and never finishes and not rasie an error - Have too many requests to the server in too short of a time,

and you are being "timed out".

Asidi

strings in Python: convenient way to format strings.

£2+3={24+3)" #'2+3=5 #evaluate all things in { )

def make_greeting(name):
return £'Hi {name}!

make_greeting('Billy') # 'Hi Billy!

Nested vs. flat data formats

Your name has {len(name)} characters,

the first of which is {name[0]}."
Y Your name has 5 characters, the first of which is B.

© Nested data formats, like HTML, JSON, and XML, allow us to represent hierarchical relationships between variables.

* Flat (i.e. tabular) data formats, like CSV, do not.

Regular expression

Regular Expression Reference

Operator  Description Operator
Matches any character except \n o
* Matches preceding character/group zero or more times
? Matches preceding character/group zero or one times *2
S Matches preceding character/group one or more times +2
\d g\ Character group of digits (0-9), alphanumerics (a2, AZ, 0.9, and underscore), or  \D, W,
o whitespace, respectively \S
{m} Matches preceding character/group exactly m times A
(m.ny  Matches preceding character/group at east m times and at most n times; if s
m, n
either m or n are omitted, set lower/upper bounds to 0 and e, respectively
{m,ny? Matches the expression to its left m times, and ignores n. )]
Matching group used to match any of the specified characters or range (e.g
1 0]
[abcde]) [a-e])
"1 Invert matching group; e.g. [*a-cmatches all characters except a, b, ¢ *

Description

Escapes special
characters

Matches
expression on
either side of
expression

non-greedy
matching to *
non-greedy
matching to +
Inverse sets of \d,
w,\s

Matches
beginning of line

Matches end of
the lin

matches (, + *,
and)

Matches the
expression and
groups it.

matches every
possible string

t Mode

DOM

Other special matching

GROUPS

() | Matches the expression inside the
parentheses and groups it

(2) | Inside parentheses like this, ? acts as an
extension notation. Its meaning depends on
the character immediately to its right.

(2PAB) | Matches the expression AB, and it
can be accessed with the group name.

(2ailmsux) | Here, a, i, L, m, s, u, and x are
flags
a—Matches ASCIl only

— Ignore case

L— Locale dependent

n—Multiine

(2:R) | Matches the expression as represented
by A, but unlike (?PAB), it cannot be
retrieved afterwards.

(?#...) | A comment. Contents are for us to
read, not for matching

A(2=B) | Lookahead assertion. This matches
the expression A only if it is followed by B.

A(218) | Negative lookahead assertion. This
matches the expression A only if it is not
followed by B.

(?<=B)A | Positive lookbehind assertion.

This matches the expression A only if B

(2<1B)A| Negative lookbehind assertion.
This matches the expression A only if 8 is
not immediately to its left. This can only
matched fixed length expressions.
(2P=name) | Matches the expression matched
by an earlier group named “name"
-)\1| The number 1 corresponds to
the first group to be matched. If we want
to match more instances of the same
expression, simply use its number instead of

writing out the whole expression again. We
can use from 1 up to 99 such groups and

is immediately to its left. This can only
matched fixed length expressions.

s — Matches all
u— Matches unicode
x— Verbose

their corresponding numbers.

Regular expression functions

import re

re.findall(a, B) # Matches all instances of an expression A in a string B and returns them in a list.
re.search(a, B) # Matches the first instance of an expression A in a string B, and returns it as a rematch
object.

re.split(a, B) # Split a string B into a list using the delimiter A.

re.sub(A, B, C) # Replace A with B in the string C.
Bag of words: doesn't consider order; treat equally; not consider meaning
The bag of words model represents documents (e.g. job titles, sentences, essays) as vectors of word count,

Cosine similarity and bag of words: cos 6 = large > two word vectors similar (nomalize length of vecotors)

cosine distance (the complement of cosine similarity): dist(d@, ) = 1 — cos 0. If dist (g, B) is small, the two word vectors are similar.
Parameters vs. hyperparameters
* Aparameter defines the relationship between variables in a model. We learn parameters from data.

* Ahyperparameter is a parameter that we get to choose before our model is fit to the data.

Quantifying text data
TF-IDF

Term frequency
« The term frequency of a word (term) ¢ in a document d, denoted tf(#, d) is the proportion of words in document d that are equal to f.

number of occurrences of 7 in d

. d) = el number of words in

® Iftf(s,d) is large, then word 1 occurs often in d.

® Iftf{z,d)is small, then word 1 does not occur often d.

how often a word appears in a particular document

Inverse document frequency

« The inverse document frequency of a word ¢ in a set of documents d\, da, . . . is
B total number of documents
idf(r) = log - -
number of documents in which ¢ appears

Note: the inverse document frequency need to look at all documents. (total number of documents, not total number of words in documents)

* how often a word appears across documents

Ifidf(x) is large, then 7 is rarely found in documents.

If idf(z) is small, then 7 is commonly found in documents.

In idf(s) the loglog "dampens” the impact of the ratio —iuormels .

If a word is very common, the ratio will be close to 1. The log of the ratio will be close to 0.

Term fr se di

The term i (TF-IDF) of word  in document d is the produ

tfidf(z, d) = tf(, d) - idf(r)
_ number of occurrences of find lo
total number of words in d e

total number of documents
number of documents in which  appears

o Iftfidf(z, ) is large, then ¢ is a good summary of d.

= But to know if tfidf(z, d) is large, we need to compare it to tfidf(#;, d), for several different words t;.
* TF-IDF is a heuristic - it has no probabilistic justification.

# For a certain word in a sentence

tf = sentences.iloc(1].count('word') / len(sentences.iloc[1].split())
idf = np.log(len( )/ .str.cont
tfidf = £f * idf

# TF-IDF for all words in all documents

(‘word").sum())

unigue_words = np.unigue(sentences.str.split().sum())
tfidf dict = ()
for word in unique words:
re_pat = fr'\b{word}\b'
+tf = sentences.str.count(re pat) / sentences.str.split().str.len()

idf = np.log(len(sentences) / sentences.str.contains(re pat).sum()
tfidf_dict(word] = tf * idf

# return a DataFrame demonstrating the TF-IDF for all vords in all sentences

tfidf - pd.DataFrame(tfidf dict).set_index(sentences)

For a given document, the word with the highest TF-IDF best summarizes that document.

By using idxmax, we can find the word with the highest TF-IDF in each sentence.

Feature Engineering

* Afeature is a measurable property or characteristic of a phenomenon being observed. (*(explanatory) variable" and "attribute")
o In DataFrames, features typically correspond to columns, while rows typically correspond to different individuals.

® There are two types of features: come as part of a dataset v.s we create.

e Feature engineering is the act of finding transformations that transform data into effective quantitative variables.

o Afeature function ¢ (phi, pronounced "fea") is a mapping from raw data to d-dimensional space, i.e. ¢ : raw data — R,

o If two observations z; and z;; are "similar” in the raw data space, then ¢() and ¢(;) should also be "similar."
MSE = L 330, (i — H(2))" vs RMSE =/ 0 (i — H(z1))*

np.mean((actual - pred) ** 2) # MSE
np.sqrt(np.mean((actual - pred) ** 2)) # RUSE

Key idea:

he lower the MSE is, the "better" the model fits the *tr

ing* data
Important: The line that minimizes MSE is the same line that minimizes RMSE and SSE (sum of squared errors).
Dropping features

1. When the features do not contain information associated with the prediction task.

2. When the feature is not available at prediction time. |

Fitting a linear model

from scipy.stats import linregress
In = linregress(x=galton['father'], y=galton'childHeight'])

# output: LinregressResult(slope=, intercept=, rvalue=, pvalue=, stderr=, intercept stderr=)

1n.intercept, lm.slope # Use this to predict by calculation

Periodic data

Transform one column or variable o that the relation between two variables are roughly linear.



Transform in sklearn Cross-validation

- - Asinge vaidaton set
Binarizer - etoldcross-validation

sklearn.preprocessing #feature creation - - = =
# input: multi-dimensional numpy array (can be df); output: numpy array == o - s

from sklearn.preprocessing import Binarizer [P TS———— e —

binar = Binarizer(threshold=20) # set x=1 if x > thresh, else 0 N e [

feat - binar.transform(data) # Binarize all columns in data s s

Stdscaler: z;

iyl gz o s

k1 i ler
£rom ing import £rom sklearn.model_selection import KFold

kfold = KFold(5, shuffle=True, random_stat
errs_df = pd.DataFrame()
for train, val in kfold.split(data):

stdscaler = StandardScaler() # z-scale the data (no parameters)
stdscaler.fit(data) # compute the mean and SD of data # first call the fit method on stdscaler

feat = stdscaler.transform(newdata) # z-scale newdata with mean and SD of data

stdscaler.mean_, stdscaler.var_ # mean and var for each columns print (£ erain: (dataltrain]y, validation: (dataivall))

from sklearn.model selection import cross_val score
OneHotEncoder cross_val_score(estimator, data, target, cv)

#estimator: pipeline(has not alreday been fit); data: training; target: y; cv: k (fold)
So that we don't have to deal with lists within Series, we can flatten lists of tags so that there is one column per tag

: need to shuffle the data first before use cross fold
This process - of converting categorical variables into columns of 15 and 0s - is called one-hot encoding

# a function that takes in the list of tags (taglist) for a given quote and returns the one-hot-encoded Decision Trees
sequence of 1s and 0s for that quote.
def flatten tags(taglist): from sklearn.tree import DecisionTreeClassifier
return pd.Series({k:1 for k in taglist}, dtype=float) dt = DecisionTreeClassifier(max depth=2) # by default, without restriction, decision trees > very deep
‘tags = df('tags').apply(flatten_tags).fillna(0).astype(int) dt.fit(X_train, y_train)
tags.head() dt.tree_-max_deptn
dt.score(X_train, y_train) or (dt.predict(X_train) == y_train).mean() # Accuracy

# sklearn also has the function for doing one-hot encoding :
.score(X, y) is R? inregression; .score(X, y) is training accuracy in classification

from skl import
€ © GERSEEEETEA() Decision trees have a tendency to overfit. Make the decision tree "less complex" by limiting the maximum depth.
ohe. £it (data)

ohe_features = ohe.transforn(data)  If you want to increase the test accuracy, Reduce the number of features and Decrease the max depth parameter of the
ohe.categories_ # unique values (i.e. categories) in each column decision tree

ohe_features.toarray() # the resulting matrix is sparse — most of its elements are 0
ohe.get_feature_names() # x0, x1, x2, and x3 correspond to column names in data Grid search
ohe. inverse_transform(ohe_features[:10]) # takes a one-hot-encoded matrix and returns a categorical matrix 1
. Gridsearchev takes in: an un- £it instance of an estimator, and and a dictionary of hyperparameter values to try,
QuantileTransformer
and performs kk-fold cross-validation to find the combination of hyperparameters with the best average validation
from skl ing import Quanti performance. (try all unique combinations of hyperparameters )

gt - QuantileTransformer(n_quantiles=100)
qt.fit(df) qt.transform(df) from sklearn.model selection import GridSearchCv
hyperparameters = {

FunctionTransformer ‘max_depth': (2, 3, 4, 5, 7, 10, 13, 15, 18, None],
‘min_samples_split': [2, 3, 5, 7, 10, 15, 201,
Jr—— P criterion’: ['gini', ‘entropy']

# there are 140 combinations of hyperparameters (len(max) * len(min) *+ len(cri
def functionI(parameter } # there are 140 combinations of hyperparameters (len(max) * len(min) * len(cri))

£t = FunctionTransformer(func=function) # or can put lambda inside

#define function
searcher = D Treeclassifier(), ev=5)

searcher.fit(X_train, y_train)

f£t.transform(df)
searcher.best_params_ # best combination of hyperparameters to use

searcher.cv_results_[ 'mean_test_score'] # array of length 140

Models in sklearn # AlL of the intermediate results — validation accuracies for each fold, mean validation accuaries
searcher.predict(X_train)
Li ion : minimizes mean squared error by default. searcher.score (X test, y test)
sklearn.linear_models #model creation Multicollinearity
from sklearn.linear model import LinearRegression
1r - LinearRegression() # Create (empty) linear regression model Redundant features: Data in different units, will not change the RMSE if we use data in other unit as one more feature

lr.fit(X, y) # Determines regression coefficients
In other words, multicollinearity occurs when a feature can be predicted using a linear combination of other features, fairly

# AX needs to be a df to be multi-dimensional (or reshape series/array)
X accurately.

1r _ data) # make predict # Can be 2D with multiple columns

1r.intercept , lr.coef_ # intercept and of this linear model

Multicollinearity doesn't impact a models predictions!
1lr.score(data, responses) # Calculate the R"2 of the LR model
Manually remove highly correlated features. or Use a dimensionality reduction technique (such as PCA) to reduce dimensions.
Note: Once fit, estimators like LinearRegression are just transformers (predict <-> transform).
Multicollinearity is present when performing one-hot encoding

R? coefficient of determination,

s a measure of the quality of a linear fit.
pd.get_dummies (tips_features, drop_first=True) # drop one column per categorical feature.
o There are a few equivalent ways of computing it, assuming your model has an intercept term:

(predicted y values)
{actual y values)

R2_

np.var(pred) / np.var(actual) Modeling using text features

R? = [correlation(predicted y values, actual y values)|? = non-diagonal entry in (np.corrcoet (pred, actual)) ** 2 .
CountVectorizer
lr.score

f£rom skl feat text import zer

o Inthe simple linear regression case, it is the square of the correlation coefficient, 7. L
example_corp = ['hey hey hey my name is billy',

* Keyidea: R? ranges from 0 to 1. The closer it is to 1, the better the linear fit is. ‘hey billy how is your dog billy']

count_vec = Countvectorizer()

count_vec. £it (example_corp)

We like linear models with low RMSE and high R*t count_vec.vocabulary # learned a vocabulary from the corpus we fit it on
count_vec. transform(example_corp) . toarray()

o Interpretation: R? is the proportion of variance in y that the linear model explains.

Pipeline in sklearn RandomForestClassifier

® A pipeline objectisinstantiated using a list containing transformer(s) and a model (estimator).  Arandom forest" is a combination (or ensemble) of decision trees, each fit on a different bootstrapped resample of the
training data.
pl = Pipeline([feat_transl, feat trans2, ..., mdl])

from sklearn.model_selection import train_test_split
® Once a pipeline is instantiated, you can fit all steps (transformers and model) using £it. pl.fit(data, responses) from sklearn.pipeline import Pipeline

£rom skl ble import ifi

e Tomake predictions using raw (untransformed) data, use pl.predict
X_train, X_test, y train, y_test = train_test split(X, y)

Creating a Pipeline Pl = Pipeline([
(‘ev', Countvectorizer()),
(ere’, i _depth=8, n_ 7)) # Uses 7 separate decision trees

from sklearn.pipeline import Pipeline
from skl import n
PL.£it(X_train, y_train)

pl.score(X_train, y_train) / pl.score(X_test, y_test)

from sklearn.compose import ColumnTransformer
£rom skl import 1

preproc = ColumnTransformer( # list of tuple

transformers = [ # first is name, second is transformer, third is list of columns

Classifier evaluation

('quant’, Standardscaler(), ['total bill', 'size'l),
(‘cat’, OneHotEncoder(), ['sex', 'smoker', 'day’, 'time']) o o
1#, remainder='passthrough’ [o] in binary

)

When performing binary classification, there are four possible outcomes.
Pl = Pipeline([ # a list of tuples where first is name and second is transformer

("preprocessor’, preproc), (Note: A *positive prediction” is a prediction of 1, and a *negative prediction" is a prediction of 0.)

('lin-reg’, LinearRegression())
D Outcome of Prediction Definition True Class
pl.fit(tips_features, tips['tip']) # Must fit before predict .
e PO, O T True positive (TP) ‘The predictor correctly predicts the positive class.
pl.score(tips_features, tips('tip']) Faise negative (FN) % The predictor Incorrectly predicts the negative class. 3
pl.named_steps [ 'preprocessor’ | .transform(tips_features) # can access the individual "steps’ in pl using the
named_steps attribute gat pr y pr negative class. N

Faise positive (FF) ¢ The predictor incorrectly predicts the positive class. N

Note: ColumnTransformer has a remainder argument that you can use to specify what to do with columns that aren't being
transfromed ( *drop' or 'passthrough’).

o

Avoiding overfitting Predicted Negative Predicted Positive
* Split our sample into a training set and test set. + Use only the training set to fit the model (i.e. find w*). Actually Negative L1v] P X
* Use the test set to evaluate the model's error (RMSE, R?). Actually Positive NX ™

£rom sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train test_split(k, y, test_sizes0.2) # Default 0.25 The confusion matrix above is organized the same way that sklearn 's confusion matrices are (but differently than in the wolf example).
# calculating RusE

from sklearn.metrics import mean_squared_error # built-in RMSE/MSE function Note that in the four acronyms - TP, FN, TN, FP - the first letter is whether the prediction is correct, and the second letter is what the prediction is.
1r = LinearRegression() / lr.£it(X_train, y_train)

pred_train = lr.predict (X_train) accuracy = b o

mean_squared_error (y_train, pred_train, squared=False) # Root mean square error; True for square mean
recall = 725~ recall of a binary classifier is the proportion of actually positive instances that are correctly classified

Since rmse_train and rmse_test are similar, -> model is not overfitting to the training data. Otherwise not generalize well.

precision = 775 The precision of a binary classifier is the proportion of predicted positive instances that are correctly classified. We'd like this

T
Bias and variance number to be as close to 1 (100%) as possible.
« Bias: The expected deviation between a predicted value and an actual value. Low bias is good o Ifsimply predict all as one result, TP decrease TN will increase, or TP increase TN will decrease
* Model variance ("variance"): The variance of a model's predictions. Low model variance is good Precision and recall: precision recall = L2

.

Models that have high bias are too simple to represent complex relationships in data, and underfit.

(2 Question: When might high precision be more important than high recall?

Models that have high variance are overly complex for the relationships in the data, and vary a lot when fit on different datasets.
Such models overfit to the training data {2 Answer: For instance, in decidihg whether or not someone committed a crime. Here, false positives are really bad - they mean that an innocent
person is charged! More false negative than false positive
Parameters vs. hyperparameters
(2 Question: When might high recall be more important than high precision?
 Aparameter defines the relationship between variables in a model. We learn parameters from data
{2 Answer: For instance, in medical tests. Here, false negatives are really bad - they mean that someone's disease goes undetected! More false

« Ahyperparameter is a parameter that we get to choose before our model s fit to the data. positive than false negative



