
Computer - A programmable electronic device that can store, retrieve, and
process digital data
Hardware - The electronic machinery (wires, circuits, etc.)
Software - Programs (instructions) and data
Key Parts of Computer Hardware:
Processor - hardware that executes instructions
Main Memory (DRAM)- hardware that stores data and programs,
byte-level addressing
Disk - Similar to memory, but persistent, slower, and higher capacity
Network interface controller(NIC) - sends and retrieves data over the
network
Key Aspects of Software:
Instruction - command understood by the hardware
Program - A collection of instructions for hardware and to execute
Programming language - A human-readable formal language to write
program
Application Programming Interface(API) - set of programs for use
Data - Digital representation of information that is stored, processed
Main Kinds of Software:
Firmware - Read-only programs that offer basic hardware control
Operating System(OS) - A collection of interrelated programs that enable
application/software to use hardware easily. Ex. Windows, MacOS, Linux
Application Software - A program to manipulate data (Excel, Chrome,
PostgreSQL)
Data Systems Infrastructure:
Data acquisition/preparation: Python, scikit-learn, R
Feature Engineering Training & Inference Model Selection: TensorFlow,
PyTorch
Serving/Monitoring: Dask, Spark, AWS
Data Representation of Data:
Bits: All digital data are sequences of 0 & 1 (binary digits)

Amenable to high-low/off-on electromagnetism
Layers of abstraction to interpret bit sequences
Given k bits, we can represent unique data items2𝑘

Data type: First layer of abstraction to interpret a bit sequence with a
human-understandable category of information(common: Boolean, Byte,
Integer)
Example: Boolean, Byte, Integer, “floating point” number (Float),
Character, and String
Data structure: A second layer of abstraction to organize multiple
instances of data types as a more complex object with specified properties
Examples: Array, Linked list, Tuple, Graph, etc.
A Byte(8 bits): the basic unit of data types

Represents 2^8 unique data items
bits needed to distinguish k data items 𝐶𝑒𝑖𝑙( 𝐿𝑜𝑔

2
(𝑘))

Boolean:
E.g: Y/N or T/F responses
Just 1 bit needed
Actual size is almost always 1B, i.e., 7 bits are wasted!
Extra 7 bits for accessing information

Integer:
E.g: # of friends, age, # of likes
Typically 4 bytes; Many variants (short, unsigned, etc.)
Java int can represent -231 to (231 - 1)
C unsigned int can represent 0 to (232 - 1)
Python3 int is effectively unlimited length (PL magic!)

Hexadecimal representation: more succinct and readable
Base 16 instead of base 2 cuts display length by ~4x
Digits are 0, 1, ... 9, A ( ), B, … F ( )10

10
15

10
Each hexadecimal digit represents 4 bits

From Hexadecimal to binary: 2F → 0010 1111

Floats: half(2B); single(4B); double(8B)
E.g: salary, scores, model weights
Single-precision: 4B long; ~8 decimal digits (Java, C)
Double-precision: 8B long; ~16 decimal digits (Python)
Floating point arithmetic (addition and multiplication) is not

associative
Exponent 0xFF and fraction 0 is +/- “Infinity”
Exponent 0xFF and fraction <> 0 is “NaN”

Character(Char):
E.g: Represents letters, numerals, punctuations, etc
1 Byte in C, 2 Byte in Java
Python does not have a char type, use str or bytes

String: variable sized array of char
Digital object: Collections of basic data types(string, array, set, bytes,
integers, floats, and characters)

Serialization: The process of converting a data structure (or program
objects in general) into a neat sequence of bytes that can be exactly
recovered

Serializing bytes and characters/strings is trivial
2 alternatives for serializing integers/floats:

As byte stream (aka “binary type” in SQL)
As string, e.g., 4B integer 5 -> 2B string as “5”

String ser. common in data science (CSV, TSV, etc.)

We often convert a trained model into a format that can be stored or
transmitted. This involves transforming it into a sequence of bytes that can
be written to disk or sent over network (i.e. we have to serialize it)

We can serialize any other ML related artifacts like transformers, data,
metadata, etc.
Deserialization: the process of converting a serialized model back to its
original data structure to be used for inference.

We load it back into memory for inference or evaluation purposes
Can be implemented in various formats, such as JSON, protocol

buffers, or Apache Avro.
Basics of Processors:
Processor: Hardware to orchestrate and execute instructions to manipulate
data as specified by a program
Examples: CPU, GPU, FPGA, TPU, embedded, etc.
Instruction Set Architecture (ISA):

The vocabulary of commands of a processor
Specifies bit length/format of machine code commands
Has several commands to manipulate register contents

Load-store architecture - How processor executes machine code
Register: Tiny local memory (“scratch space”) on processors into which
instructions and data are copied
Caches: Small local memory to buffer instructions/data
Types of ISA commands to manipulate register contents:

Memory access: load (copy bytes from DRAM address to register);
store (reverse); put constant

Arithmetic & logic on data items in registers (ALU):
add/multiply/etc.; bitwise ops; compare, etc.

Control flow (branch, call, etc.)
Processor Performance
Modern CPUs can run millions of instructions per second

ISA influences #clock cycles each instruction needs
CPU’s clock rate lets us convert that to runtime (ns)

Most programs do not keep the CPU always busy
Memory access commands stall the processor
Worse, data may not be in DRAM—wait for disk I/O!
Actual execution runtime of program may be orders of

magnitude higher than what clock rate calculation suggests
The arithmetic & Logic Unit and Control Unit are idle during
memory-register transfer
Key Principle: Optimizing access to main memory and use of processor
cache is critical for processor performance

→ Due to OOM access latency differences across memory hierarchy,
optimizing access to lower levels and careful use of higher levels is critical
for overall system performance!
Locality of Reference: Many programs tend to access memory locations
in a somewhat predictable manner

Spatial: Nearby locations will be accessed soon
Temporal: Same locations accessed again soon

Locality can be exploited to reduce runtimes using caching and/or
prefetching across all levels in the hierarchy
Concepts of Memory Management
Caching: Buffering a copy of bytes from lower level at higher level to
exploit locality
Prefetching: Preemptively retrieving bytes (typically data) from addresses
not explicitly asked yet by program
Spill/Miss/Fault: Data needed for program is not yet available at a higher
level; need to get it from lower level

Register Spill(register to cache);
Cache Miss(cache to main memory)
“Page” Fault (main memory to disk)

Hit: Data needed is already available at higher level
Cache Replacement Policy: Policies of when new data needs to be
loaded to a higher level, which old data to evict to make room? Many
policies exist with different properties
Memory Hierarchy in Action

Locality of Reference in Data Science:
Data Layout: The order in which data items of a complex data structure or
an abstract data type (ADT) are laid out in memory/disk
Data Access Pattern (of a program on a data object): The order in which a
program has to access items of a complex data structure in memory
Hardware Efficiency (of a program):

How close actual execution runtime is to best possible runtime given
the CPU clock rate and ISA

Improved with careful data layout of all data objects used by a
program based on its data access patterns

Key Principle: Raise cache hits; reduce memory stalls!

The first one B[k][j] misses; each * op is a stall!
Matrices/tensors are ubiquitous in statistics/ML/DL programs
Decades of optimized hardware-efficient libraries exist for matrix/tensor
arithmetic (linear algebra) that reduce memory stalls and increase
parallelism (more on parallelism later)

Multi-core CPUs: BLAS/LA PACK (C), Eigen (C++), la4j (Java),
NumPy/SciPy (Python; can wrap BLAS)

GPUs: cuBLAS, cuSPARSE, cuDNN, cuDF, cuGraph
Memory Hierarchy in PA0
Pandas DataFrame needs data to fit entirely in DRAM
Dask DataFrame automatically manages Disk vs DRAM for u

Full data sits on Disk, brought to DRAM upon compute()
Dask stages out computations using Pandas

Tradeoff: Dask may throw memory configuration issues

Role of an OS in a Computer
An OS is a large set of interrelated programs that make it easier for
applications and user-written programs to use computer hardware
effectively, efficiently, and securely
Without OS, computer users must speak machine code
2 key principles in OS (any system) design & implementation:

Modularity: Divide system into functionally cohesive components
that each do their jobs well

Orchestra example: Consider a conductor orchestrating different
sections

Abstraction: Layers of functionalities from low-level (close to
hardware) to high level (close to user)

Car example: A pedal to transmission to engine to wheels



Key Components of OS API of OS called “System Call”
Kernel: The core of an OS with modules to abstract the hardware and APIs
for programs to use
Auxiliary parts of OS include shell/terminal, file browser for
usability, extra programs installed by I/O devices, etc.

The Abstraction of a Process
Process Management: Virtualize processor ‘process abstraction;
concurrency’
Main Memory Management: virtualize main memory
Filesystems: virtualize disk; “file” abstraction
Networking: Communication over network
Device Drivers: Talk to other I/O devices
Process: A running program, the central abstraction in OS

Started by OS when a program is executed by user
OS keeps inventory of “alive” processes (Process List) and
handles apportioning of hardware among processes

A query is a program that becomes a process
A data system typically abstracts away process management because user
specifies the queries/processes in system’s API
High-level steps OS takes to get a process going:

1.Create a process (get Process ID; add to Process List)
2. Assign part of DRAM to process, aka its Address Space
3. Load code and static data (if applicable) to that space
4. Set up the inputs needed to run program’s main()
5. Update process’ State to Ready
6. When the process is scheduled (Running), the OS temporarily

hands off control to the process to run the show!
7. Eventually, process finishes or run Destroy

Virtualization of Hardware Resources
OS has mechanisms and policies to regain control
Virtualization: Each hardware resource is treated as a virtual entity that
OS can divide up and share among processes in a controlled way
Limited Direct Execution:

OS mechanism to time-share CPU and preempt a process to run a
different one, aka “context switch”

A Scheduling policy tells OS what time-sharing to use
Processes also must transfer control to OS for “privileged” operations

(e.g., I/O); System Calls API
Virtualization of Processors:

Virtualization of processor enables process isolation (i.e., each process
given an “illusion” that it alone runs)

Inter-process communication possible in System Calls API
Later: Generalize to Thread abstraction for concurrency

Process Management by OS
OS keeps moving processes between 3 states:

Sometimes, if a process gets “stuck” and the OS does not schedule
something else, the system hangs; it needs to reboot!
Scheduling Policies/Algorithms
Schedule: Record of what process runs on each CPU & when Policy
controls how OS time-shares CPUs among processes
Key terms for a process (aka job):

Arrival Time: Time when process gets created
Job Length: Duration of time needed for process
Start Time: Times when process first starts on processor
Completion Time: Time when process finishes/killed
Response Time = [Start Time] – [Arrival Time]
Turnaround Time = [Completion Time] – [Arrival Time]

Workload: Set of processes, arrival times, and job lengths that OS
Scheduler has to handle
In general, the OS may not know all Arrival Times and Job Lengths
beforehand! But preemption is possible
Key Principle: Inherent tension in scheduling between overall workload
performance and allocation fairness

Performance metric is usually Average Turnaround Time
Fairness: Many metrics exist (e.g., Jain’s fairness index)

100s of scheduling policies studied!
We will be overviewing some well-known ones:

FIFO (First-In-First-Out)
SJF (Shortest Job First)
SCTF (Shortest Completion Time First)
Round Robin
Random, etc.

Different criteria for ranking; preemptive vs not
Complex “multi-level feedback queue” schedulers
ML-based schedulers are “hot” nowadays!
First-In-First-Out aka First-Come-First-Served (FCFS)

Ranking criterion: Arrival Time; no preemption allowed
​​Main con: Short jobs may wait a lot, aka “Convoy Effect”

Shortest Job First (SJF):
Ranking criterion: Job Length; no preemption allowed
Main con: Not all Job lengths might be unknown beforehand.

Shortest Completion Time First (SCFT):
Ranking criterion: Jobs might not all arrive at same time;

preemption possible
Main con same as SJF: Job lengths might be unknown beforehand

Round Robin:
In Round Robin job lengths need not be known

Ranking criterion: Fixed time quantum given to each job; cycle
through jobs

Main con: RR is often very fair, but Avg Turnaround Time goes up

DRAM vs. Disk
DRAM is much faster, DRAM is volatile while disk is not, DRAM has less
capacity. DRAM is more expensive.
Concurrency:
Modern computers often have multiple processors and multiple cores per
processor
Concurrency: Multiple processors/cores run different/same set of
instructions simultaneously on different/shared data
New levels of shared caches are added
Multiprocessing: Different processes run on different cores (or entire
CPUs) simultaneously
Thread: Generalization of OS’s Process abstraction

A program spawns many threads; each run parts of the program’s
computations simultaneously

Multithreading: Same core used by many threads
Issues in dealing with multithreaded programs that write shared

data:
Cache coherence
Locking; deadlocks
Complex scheduling

Scheduling for multiprocessing/multicore is more complex
Load Balancing: Ensuring different cores/proc. are kept roughly equally
busy, i.e., reduce idle times
Multi-queue multiprocessor scheduling (MQMS) is common

Each processor/core has its own job queue
OS moves jobs across queues based on load
Example Gantt chart for MQMS:

Thankfully, most data-intensive computations in data science do not need
concurrent writes on shared data! Although we often need concurrent reads

Concurrent low-level ops abstracted away by libraries/APIs
Partitioning / replication of data simplifies concurrency

Later topic (Parallelism Paradigms) will cover parallelism in depth:
Multi-core, multi-node, etc.
Task parallelism, Partitioned data parallelism, etc.

File and Directory:
File: A persistent sequence of bytes that stores a logically coherent digital
object for an application

File Format: An application-specific standard that dictates how to
interpret and process a

file’s bytes
1000s of file formats exist (e.g., TXT, DOC, GIF, MPEG); varying

data models/types, domain-specific, etc.
Metadata: Summary or organizing info. about file content(aka

payload)stored with file itself; format-dependent
Directory: A cataloging structure with a list of references to files and/or
(recursively) other directories

Typically treated as a special kind of file.
Sub-dir., Parent dir., Root dir.

Filesystem
Filesystem: The part of OS that helps programs create, manage, and delete
files on disk (secondary storage)
Roughly split into logical level and physical level:

Logical level exposes file and directory abstractions and offers
System Call APIs for file handling

Physical level works with disk firmware and moves bytes to/from
disk to DRAM
Dozens of filesystems exist, e.g., ext2, ext3, NTFS, etc.
Differ on:

how they layer file and directory abstractions as bytes, what
metadata is stored, etc.

how data integrity/reliability is assured, support for
editing/resizing, compression/encryption, etc.
Some can work with (can be “mounted” by) multiple OSs.
OS abstracts a file on disk as a virtual object for processes
File Descriptor: An OS-assigned positive integer identifier/ reference for a
file’s virtual object that a process can use:

0/1/2 reserved for STDIN/STDOUT/STDERR
File Handle: A PL’s abstraction on top of a file descriptor (fd)

System Call API for File Handling:
open(): Create a file; assign fd; optionally overwrite
read(): Copy file’s bytes on disk to in-mem. buffer
write(): Copy bytes from in-mem. buffer to file on disk
fsync(): “Flush” (force write) “dirty” data to disk
close(): Free up the fd and other OS state info on it
lseek(): Position offset in file’s fd (for random read/write later)
Dozens more (rename, mkdir, chmod, etc.)

Files v.s Databases: Data Mode
Database: An organized collection of interrelated data

Data Model: An abstract model to define organization of data in a
formal (mathematically precise) way

E.g., Relations, XML, Matrices, DataFrames
Every database is just an abstraction on top of data files:

Logical level: Data model for higher-level reasoning
Physical level: How bytes are layered on top of files
All data systems (RDBMSs, Dask, Spark, PyTorch, etc.) are

application/platform software that use OS System Call API for handling
data files
Data as File: Structured
Structured Data: A form of data with regular substructure

Relational Database, Matrix, Tensor, DataFrame, sequence:
Matrix and DF have row/col numbers, relation is orderless (TSV,

CSV)
Transpose support only by Matrix, DF

Most RDBMSs and Spark serialize a relation as binary file(s), often
compressed
Different RDBMSs and Spark/HDFS-based tools serialize relation/tabular
data in different binary formats, often compressed:

One file per relation; row vs columnar (e.g., ORC, Parquet) vs hybrid
formats

RDBMS vendor-specific vs open Apache
Parquet becoming especially popular

Comparing Structured Data Models
Ordering: Matrix and DataFrame have row/col numbers; Relation is
orderless on both axes!
Schema Flexibility: Matrix cells are numbers. Relation tuples conform to
pre-defined schema. DataFrame has no pre-defined schema but all
rows/cols can have names; col cells can be mixed types!
Transpose: Supported by Matrix & DataFrame, not Relation
Semistructured Data: A form of data with less regular / more flexible
substructure than structured data

Tree-Structured:
Typically serialized as a restricted ASCII text file (extensions

XML, JSON, YML, etc.)
Some data systems also offer binary file formats
Can layer on Relations too

Graph-Structured:
Typically serialized with JSON or similar textual formats
Some data systems also offer binary file formats
Again, can layer on Relations too

Unstructured: Data Files on Data “Lakes”
Data “Lake”: Loose coupling of data file format for storage and
data/query processing stack

JSON for raw data; Parquet processed is common



Tradoffs: Pros and cons of Parquet vs text-based files (CSV, JSON,
etc.):

Less storage: Parquet stores in compressed form; can be much
smaller (even 10x); less I/O to read

Column pruning: Enables app to read only columns needed to
DRAM; even less I/O now!

Schema on file: Rich metadata, stats inside format itself
Complex types: Can store them in a column
Human-readability: Cannot open with text apps directly
Mutability: Parquet is immutable/read-only; no in-place edits
Decompression/Deserialization overhead: Depends on application

tool
Adoption in practice: CSV/JSON support more pervasive but

Parquet is catching up, especially in enterprise “big data” situations
Data as File: Other Common Formats
Machine Perception data layer on tensors and/or time-series
Myriad binary formats, typically with (lossy) compression, e.g., WAV for
audio, MP4 for video, etc.
Text File (aka plaintext): Human-readable ASCII characters
Docs/Multimodal File: Myriad app-specific rich binary formats
Virtualization of GRAM with Pages
Page: An abstraction of fixed size chunks of memory/storage

Makes it easier to virtualize and manage DRAM
Page Frame: Virtual slot in DRAM to hold a page’s content
Page size is usually an OS configuration parameter

E.g., 4KB to 16KB
OS Memory Management has mechanisms to:

Identify pages uniquely (page frame 0 for OS)
Read/write page from/to disk when requested by a process

Apportioning of DRAM: Elements
A process’s Address Space:

Slice of virtualize DRAM assigned to it alone!
OS “translates” DRAM vs disk address

Page Replacement Policy:
When DRAM fills up, which cached page to evict?
Many policies in OS literature

Memory Leaks:
Process forgot to “free” pages used a while ago
Wastes DRAM and slows down system

Garbage Collection:
Some PL implementations can auto-reclaim some wasted memory

Storing Data In Memory
Any data structure in memory is overlaid on pages
Process can ask OS for more memory in System Call API

If OS denies, process may crash
Apache Arrow:

Emerging standard for columnar in-memory data layout
Compatible with Pandas, (Py)Spark, Parquet, etc.

Persistent Data Storage
Hard Disk, CD, SSDs
SSDs has a key latency dichotomy for random vs. sequential data

Volatile Memory: A data storage device that needs power/electricity to
store bits; e.g., DRAM, CPU caches (SRAM)
Persistence: Program state/data is available intact even after process
finishes
Non-Volatile or Persistent memory/storage: A data storage device that
retains bits intact after power cycling

E.g., all levels below DRAM in memory hierarchy
“Persistent Memory (PMEM)”: Marketing term for large DRAM

that is backed up by battery power!
Non-Volatile RAM (NVRAM): Popular term for DRAM-like device

that is genuinely non-volatile (no battery)
Note: PMEM and NVRAM are typically used in high-performance

servers and storage systems where fast, reliable access to data is critical.
Disk and Data Organization on Disk
Disk: Aka secondary storage; likely holds the vast majority of the world’s
day-to-day business-critical data!
Data storage/retrieval units: disk blocks or pages
Unlike RAM, different disk pages have different retrieval times based on
location:

Need to optimize layout of data on disk pages
Orders of magnitude performance gaps possible

Disk space is organized into files
Files are made up of disk pages aka blocks(basic unit)
Typical disk block/page size: 4KB or 8KB:

Basic unit of reads/writes for a disk
OS/RAM page is not the same as disk page!
Typically, [OS/RAM page size] = [Disk page size] but not always;

disk page can be a multiple, e.g., 1MB
File data (de-)allocated in increments of disk pages
Magnetic Hard Disks
Key Principle: Sequential vs. Random Access Dichotomy
Accessing disk pages in sequential order gives higher throughput

Random reads/writes are OOM slower!
Need to carefully lay out data pages on disk, not the case for DRAM
Abstracted away by data systems: Dask, Spark, RDBMSs, etc.
Flash SSD vs. Magnetic Hard Disks
Random reads/writes are not much worse

Different locality of reference for data/file layout
But still block-addressable like HDDs

Data access latency: 100x faster! (Note: Access ~ Lookup)
Data transfer throughput: Also 10-100x higher (Note: Access ~ Read/Write
Parallel read/writes more feasible
Cost per GB is 5-15x higher!
Read-write impact asymmetry; much lower lifetimes
NVRAM vs. Magnetic Hard Disks
NVRAM is like a non-volatile form of DRAM,
but with similar capacity as SSDs
Random R/W with less to no SSD-style wear and tear

Byte-addressability (not blocks like SSDs/HDDs)
Spatial locality of reference like DRAM; radical change!

Latency, throughput, parallelism, etc. similar to DRAM
Alas, limited to HPC and enterprise environments
Cloud computing
Cloud: shared-Disk, shared-memory, [shared nothing]

Compute, storage, memory, networking, etc. are virtualized
and exist on remote servers; rented by application users
Main pros of cloud vs on-premise clusters:

Manageability: Managing hardware is not user’s problem
Pay-as-you-go: Fine-grained pricing economics

based on actual usage (granularity: seconds to years!)
Elasticity: Can dynamically add or reduce capacity

based on actual workload’s demand
Infrastructure-as-a-Service (IaaS) (IT Administrators):

Compute:
Elastic Compute Cloud (EC2) (PA)
Elastic Container Service (ECS)
Serverless compute engines:
Fargate (serverless containers),
Lambda (serverless functions)

Storage:
Simple storage service (S3)
Elastic Block Store (EBS)
Elastic File System (EFS)
Glacier (storage classes)

Networking:
CloudFront (low latency content delivery)
Virtual Private Cloud (VPC)

Platform-as-a-Service (PaaS) (Software Developer):
Database/Analytics Systems:
Aurora, Redshift, Neptune, ElastiCache, DynamoDB,
Timestream, EMR, Athena

Blockchain: QLDB
IoT: Greengrass
ML/AI: SageMaker* (both Paas and SaaS)

Software-as-a-Service (SaaS) (End-user):
ML/AI: SageMaker*, Elastic Inference, Lex, Polly,
Translate, Transcribe, Textract, Rekognition,
Ground Truth

Business Apps: Chime, WorkDocs, WorkMail
Evolution of Cloud Infrastructure:
Data Center: Physical space from which a cloud is operated
3 generations of data centers/clouds:

Cloud 1.0 (Past): Networked servers; user rents servers
(timesliced access) needed for data/software

Cloud 2.0 (Current): “Virtualization” of networked
servers; user rents amount of resource capacity;
cloud provider has a lot more flexibility on provisioning
(multi-tenancy, load balancing, more elasticity, etc.)

Cloud 3.0 (Ongoing Research): “Serverless” and
disaggregated resources all connected to fast networks

Modern networks in data centers have become much faster:
In terms of gigabit Ethernet connection speeds, one can

find speeds in the order of magnitude 100GbE to even TbE!
Decoupling of compute+memory from storage is common
in cloud

Hybrids of shared-disk parallelism+shared-nothing parallelism
E.g, store datasets on S3 and read as needed to local EBS

New Cloud Renting Paradigms
Cloud 2.0’s flexibility enables radically different paradigms
AWS example below; Azure and GCP have similar gradations
Such bundling means some applications might
under-utilize some resources!
Serverless paradigm gaining traction for some applications,
e.g., online ML prediction serving on websites
User gives a program (function) to run and specifies CPU
and DRAM needed
Cloud provider abstracts away all resource provisioning entirely
Higher resource efficiency; much cheaper, often by 10x vs Spot instances
Aka Function-as-a-Service (FaaS)
Logical next step in serverless direction: full resource
disaggregation! That is, compute, memory, storage, etc.
are all network-attached and elastically added/removed
Is all this complexity worth it?:
Depends on the user's/application’s Pareto tradeoffs!
On-premise cluster are still common in large enterprises,
healthcare, and academia; “hybrid clouds” too
Recall main pros of cloud: manageability, cost, and elasticity
Some main cons of cloud (vs on-premise):

Complexity of composing cloud APIs and licenses;
data scientists must keep relearning; “CloudOps” teams

Cost over time can crossover and make it costlier!
Easier to waste money accidentally on the fly
“Lock-in” by cloud vendor
Privacy, security, and governance concerns
Internet disruption or unplanned downtime, e.g., AWS

outage in 2015 made Netflix, Tinder, etc. unavailable!
Layers of typical cloud: Compute, Storage, Networking
Spot vs On-Demand:

On-demand has static price
Need manual launch request
You can determine when to interrupt instance

Bias-Variance Tradeoff of ML
When prediction target complexity is high, more training
data coupled with more complex models yield higher

accuracy as number of training examples grows
High Bias: Roughly, model is not rich enough to represent data
High Variance: Model overfits to given data; poor generalization
Large-scale training data lowers variance and raises accuracy!
Why Large-Scale Data?
Large-scale data is a game changer in data science:

Enables study of granular phenomena in sciences,
businesses, etc. not possible before

Enables new applications and personalization/customization
Enables more complex ML prediction targets and

mitigates variance to offer high accuracy
Hardware has kept pace to power the above:

Storage capacity has exploded (PB clusters)
Compute capacity has grown (multi-core, GPUs, etc.)
DRAM capacity has grown (10GBs to TBs)
Cloud computing is “democratizing” access to hardware;SaaS

Big Data
Big Data Typical characterization by 3 Vs:

Volume: larger than single-node DRAM
Variety: relations, docs, tweets, multimedia, etc.
Velocity: high generation rate, e.g., sensors, surveillance

Parallel Data Processing
Basic Idea: Split up workload across processors and perhaps
also across machines/workers (aka “Divide and Conquer”)
Common in parallel data processing: “threads”

Generalization of process abstraction of OS
A program/process can spawn many threads

Each runs its part of program’s computations simultaneously
All threads share address space (so, data too)

In multi-core CPUs, a thread uses up 1 core
“Hyper-threading”: Virtualizes a core to run 2 threads!

Common in parallel data processing: “Dataflow Graph”:
A directed graph representation of a program with vertices being

abstract operations from a restricted set of computational primitives:
Extended relational dataflows: RDBMS, Pandas, Modin
Matrix/tensor dataflows: NumPy, PyTorch, TensorFlow

Enables us to reason about data-intensive programs at a higher level
(logical level?)
Task Graph: Similar but coarse-grained; vertex is a process
Logical Query Plan: Relational Algebra Gate Graph
Neural Computational Graph: Neural Network Graph

Task Parallelism
Topological sort of tasks in task graph for scheduling
Notion of a “worker” can be at processor/core level, not just at node/server
level

Thread-level parallelism possible instead of process-level
E.g., Dask: 4 worker nodes x 4 cores = 16 workers total

Main pros of task parallelism:
Simple to understand; easy to implement
Independence of workers => low software complexity

Main cons of task parallelism:
Data replication across nodes; wastes memory/storage
Idle times possible on workers

Degree of Parallelism
The largest amount of concurrency possible in the task graph, i.e., how
many task can be run simultaneously
Possible Bottlenecks in Dask:
Memory errors, poor optimization, huge task graphs take too long to
serialize, poor scalability of scheduler, machine failures.

Scaleup refers to the ability of a system to retain the same performance
ratio of tasks-per-resources when both the tasks and the resources increase
at same rate



“Dask is a flexible library for parallel computing in Python”
2 key components:

APIs for data science ops on large data
Dynamic task scheduling on multi-core/multi-node

Design desirables:
Pythonic: Stay within PyData stack (e.g., no JVM)
Familiarity: Retain APIs of NumPy, Pandas, etc.
Scaling Up: Seamlessly exploit all cores
Scaling Out: Easily exploit cluster (needs setup)
Flexibility: Can schedule custom tasks too
Fast?: “Optimized” implementations under APIs

“Lazy Evaluation”:
Ops on data structures are NOT executed immediately
Triggered manually, e.g., compute()
Dataflow graph / task graph is built under the hood

Possible Issue in Dask:

Dask: Task-Parallelism best Practices:
Data Partition sizes:

Avoid too few chunks (low degree of par.)
Avoid too many chunks (task graph overhead)
Be mindful of available DRAM
Rough guidelines they give:
# data chunks ~ 3x-10x # cores, but
# cores x chunk size must be < machine DRAM, but
chunk size shouldn’t be too small (~1 GB is OK)

Q: Do you tune any of these when using an RDBMS?
Dask still lacks “physical data independence”!
Use the Diagnostics dashboard:

Monitor # tasks, core/node usage, task completion
Task Graph sizes:

Too large:
Bottlenecks (serialization / communication / scheduling)

Too small: Under-utilization of cores/nodes
Rough guidelines:
Tune data chunk size to adjust # tasks (see previous point)
Break up a task/computation
Fuse tasks/computations aka “batching”, or in other

cases break jobs apart into distinct stages.
Execution Optimization Tradeoffs

Be judicious in tuning data chunk sizes
Be judicious in batching vs breaking up tasks

Speedup is a function of the above factors

Single-Instruction Multiple-Data (SIMD)
A fundamental form of parallel processing in which different
chunks of data are processed by the “same” set of instructions
shared by multiple processing units (PUs)
Aka “vectorized” instruction processing (vs “scalar”)
Data science workloads are very amenable to SIMD
Note: no “master” scheduler in this scenario
Single-Instruction Multiple Thread (SIMT): Generalizes
notion of SIMD to different threads concurrently doing so

Each thread may be assigned a core or a whole PU
Single-Program Multiple Data (SPMD): A higher level of
abstraction generalizing SIMD operations or programs

Under the hood, may use multiple processes or threads
Each chunk of data processed by one core/PU
Applicable to any CPU, not just vectorized PUs
Most common form of parallel programming
In this case, work is distributed from a central scheduler

or orchestrator.
In data science computations, an often useful surrogate for
completion time is the instruction throughput FLOP/s,
i.e., number of floating point operations per second
Modern data processing programs, especially deep learning

(DL) may have billions of FLOPs aka GFLOPs!
Amdahl’s Law: Formula to upper bound possible speedup

A program has 2 parts: one that benefits from
multi-core parallelism and one that does not

Non-parallel part could be for control, memory stalls,
traversing a linked list

Moore's Law: The number of transistors in a dense integrated circuit doubles

Practices:

Linear?

Task Graph

DRAM is the level of memory that has the lowest latency
to read data from
Dennard Scaling: As transistors get smaller, their power density stays
constant, so that the power use stays in proportion with area.
Takeaway from hardware trends: it is hard for general-purpose CPUs to
sustain FLOP-heavy programs like deep nets
Motivated the rise of “accelerators” for some classes of programs
Graphics Processing Unit (GPU): Tailored for matrix/tensor ops
Basic idea: use tons of ALUs; massive data parallelism (SIMD on
steroids); Titan X offers ~11 TFLOP/s!
Tensor Processing Unit (TPU): Even more specialized tensor ops in DL
inference; ~45 TFLOP/s!
Field-Programmable Gate Array (FPGA): Configurable for any class of
programs; ~0.5-3 TFLOP/s

(1):Data processing programs need to go through the OS System
Call API to read text files but can typically bypass that API
if they want to read binary file: FALSE
(2):Which of the following properties of data processing programs
is sometimes exploited to help reduce runtimes?: Spatial locality of
reference;Temporal locality of reference ;Parallelism in computations

(Post Midterm:)

How much DRAM might a machine have?
Common DRAM configs:
• Average Laptop: 16GB
• t2.xlarge EC2 instance: 16GB (at $0.19/hour)
• 2023 MacBook Pro: 32GB-96GB
• Consumer Deep Learning / Gaming PC: 128GB ($288 fixed)
• r7g.metal EC2 instance: 512GB (at $3.43/hour)
• hpc6id.32xlarge EC2 instance: 1024GB (at $5.70/hour)
Less common: u-24tb1.112xlarge: 24TB (at $218.40/hour)

Scalable Data Access
Central Issue: Large data file does not fit entirely in DRAM
Basic Idea: Divide-and-conquer again.
“Split” a data file (virtually or physically)
and stage reads of its pages from disk to DRAM;
vice versa for writes.
Single-node disk: Paged access from file on local disk
Remote read: Paged access from disk(s) over a network
Distributed memory: Data fits on a cluster’s total DRAM
Distributed disk: Use entire memory hierarchy of cluster
Paged Data Access to DRAM

Page Management in DRAM Cache
Caching: Retaining pages read from disk in DRAM
Eviction: Removing a page frame’s content in DRAM
Spilling: Writing out pages from DRAM to disk
❖ If a page in DRAM is “dirty” (i.e., some bytes were written but
not backed up on disk), eviction requires a spill.
❖ The set of DRAM-resident pages typically changes over the
lifetime of a process
Cache Replacement Policy: The algorithm that chooses which
page frame(s) to evict when a new page has to be cached but the
OS cache in DRAM is full
❖ Popular policies include Least Recently Used, Most Recently
Used, etc. (more shortly)
Quantifying I/O: Disk, Network
Page reads/writes to/from DRAM from/to disk incur latency
Disk I/O Cost: Abstract counting of number of page I/Os; can
map to bytes given page size
Sometimes, programs read/write data over network
Communication/Network I/O Cost: Abstract counting of number
of pages/bytes sent/received over network
I/O cost is abstract; mapping to latency is hardware-specific
Example: Suppose a data file is 40GB; page size is 4KB
I/O cost to read file = 10 million page I/Os
Disk with I/O throughput: 800 MB/s → 40GB/800MBps = 50s
Network with speed: 200 MB/s → 40GB/200MBps = 200s
Scaling to (Local) Disk

In general, scalable programs stage access to pages of file on
disk and efficiently use available DRAM
❖ Recall that typically DRAM size << Disk size
Modern DRAM sizes can be 10s of GBs; so we read a



“chunk”/“block” of file at a time (say, 1000s of pages)
❖ On magnetic hard disks, such chunking leads to more
sequential I/Os, raising throughput and lowering latency!
❖ Similarly, write a chunk of dirtied pages at a time
Generic Cache Replacement Policies
What to do if number of page frames is too few for file?
Cache Replacement Policy: Algorithm to decide which page frame(s)
to evict to make space
Typical frame ranking criteria:
❖ recency of use
❖ frequency of use
❖ number of processes reading it
Typical optimization goal: Reduce total page I/O costs
A few well-known policies:
❖ Least Recently Used (LRU): Evict page that was used longest ago
❖ Most Recently Used (MRU): (Opposite of LRU)
❖ ML-based caching policies are “hot” nowadays!
Data Layouts and Access Patterns
❖ Recall that data layouts and data access patterns affect what
data subset gets cached in higher level of memory hierarchy
❖ Recall matrix multiplication example and CPU caches
❖ Key Principle: Optimizing layout of data file on disk based on
data access pattern can help reduce I/O costs
❖ Applies to both magnetic hard disk and flash SSDs
❖ But especially critical for magnetic hard disks due to vast
differences in latency of random vs sequential access!

Row-store vs Column-store Layouts
❖ A common dichotomy when serializing 2-D structured data
(relations, matrices, DataFrames) to file on disk
❖ Based on data access pattern of program, I/O costs with row- vs
col-store can be orders of magnitude apart!
❖With row-store: need to fetch all pages; I/O cost: 6 pages
❖With col-store: need to fetch only B’s pages; I/O cost: 2 pages
This difference generalizes to higher dimensions for tensors

Hybrid/Tiled/“Blocked” Layouts

Dask’s DataFrame
Basic Idea: Split data file (virtually or physically) and stage reads
of its pages from disk to DRAM (vice versa for writes)
❖ Dask DF scales to disk-resident data via a row-store
❖ “Virtual” split: each split is a Pandas DF under the hood
❖ Dask API is a “wrapper” around Pandas API to scale ops to
splits and put all results together
❖ If file is too large for DRAM, need manual repartition() to
get physically smaller splits (< ~1GB)

Modin’s DataFrame
Basic Idea: Split data file (virtually or physically) and stage reads
of its pages from disk to DRAM (vice versa for writes)
❖ Modin’s DF aims to scale to diskresident data via a tiled store
❖ Enables seamless scaling along both dimensions
❖ Easier use of multi-core parallelism
→Many in-memory RDBMSs had this, e.g., SAP HANA,

Oracle TimesTen
→ ScaLAPACK had this for matrices

Scaling with Remote Reads
Basic Idea: Split data file (virtually or physically) and stage reads
of its pages from disk to DRAM (vice versa for writes)
❖ Similar to scaling to local disk but not “local”:
❖ Stage page reads from remote disk/disks over the network
(e.g., from S3)
❖ More restrictive than scaling with local disk, since spilling is not
possible or requires costly network I/Os
❖ OK for a one-shot filescan access pattern
❖ Use DRAM to cache; repl. policies
❖ Can also use smaller local disk as cache

Scaling to Disk: Non-dedup. Project

Scaling to Disk: Simple Aggregates:
Similar behavior with Non-dedup
Scaling to Disk: Group By Aggregate

Q: But what if hash table > DRAM size?
Program might crash depending on backend implementation. OS may
keep swapping pages of hash table to/from disk; aka “thrashing”
Q: How to scale to large number of groups?
❖ Divide and conquer! Split up R based on values of A
❖ HT for each split may fit in DRAM alone
❖ Reduce running info. size if possible
Scaling to Disk: Relational Select
❖ Straightforward filescan data access pattern
❖ Read pages/chunks from disk to DRAM one by one
❖ CPU applies predicate to tuples in pages in DRAM
❖ Copy satisfying tuples to temporary output pages
❖ Use LRU for cache replacement, if needed
❖ I/O cost: 6 (read) + output # pages (write)
Scaling to Disk: Relational Select

Scaling to Disk: Matrix Sum of Squares

Scalable Matrix/Tensor Algebra:
❖ In general, tiled partitioning is more common for matrix/tensor ops
❖ DRAM-to-disk scaling:
❖ pBDR, SystemDS, and Dask Arrays for matrices
❖ SciDB, Xarray for n-d arrays
❖ CUDA for DRAM-GPU caches scaling of matrix/tensor ops
Numerical Optimization in ML:
Many regression and classification models in ML are formulated as a
(constrained) minimization problem
❖ E.g., logistic and linear regression, linear SVM, DL
classification and regression.
❖ Aka “Empirical Risk Minimization” (ERM) approach
❖ Computes “loss” of predictions over labeled examples
❖ Hyperplane-based models aka Generalized Linear Models
(GLMs) use f() that is a scalar
function of distances: w^{T}x_{i}
Batch Gradient Descent for ML

❖ Learning rate is a hyper-parameter selected by user or
“AutoML” tuning procedures
❖ Number of epochs (iterations) of BGD also hyper-parameter
Data Access Pattern of BGD at Scale
❖ The data-intensive computation in BGD is the gradient
❖ In scalable ML, dataset D may not fit in DRAM
❖ Model w is typically (but not always) small and DRAM-resident
❖ Gradient is like SQL SUM over vectors (one per example)
❖ At each epoch, 1 filescan over D to get gradient
❖ Update of w happens normally in DRAM
❖ Monitoring across epochs (or iterations) for convergence needed
❖ Loss function L() is also just a SUM in a similar manner
I/O Cost of Scalable BGD
❖ Straightforward filescan data access pattern for SUM
❖ Similar I/O behavior as non-dedup. project and simple SQL
aggregates
❖ I/O cost: 6 (read) + output # pages (write for final w)
Stochastic Gradient Descent for ML
❖ Two key cons of BGD:
❖ Often, too many epochs to reach optimal
❖ Each update of w needs full scan: costly I/Os, full design matrix in
memory
❖ Stochastic GD (SGD) mitigates both cons
❖ Basic Idea: Use a sample (mini-batch) of D to approximate gradient
instead of “full batch” gradient
❖ Done without replacement
❖ Randomly reorder/shuffle D before every epoch
❖ Sequential pass: sequence of mini-batches
❖ Another big pro of SGD: works better for non-convex
loss too, especially DL
❖ SGD often called the “workhorse” of modern ML/DL
Access Pattern of Scalable SGD:

I/O Cost of (Very) Scalable SGD:
❖ I/O cost of random shuffle is non-trivial; need so-called “external
merge sort” (skipped in this course)
❖ Typically amounts to 1 or 2 passes over file
❖ Mini-batch gradient computations: 1 filescan per epoch:
❖ As filescan proceeds, count # examples seen, accumulate perexample gra
❖ Typical mini-batch sizes: 10s to 1000s... or 1 if transformer model
and limited resources...
❖ Orders of magnitude more model updates than BGD!
❖ Total I/O cost per epoch: 1 shuffle cost + 1 filescan cost
❖ Often, shuffling only once upfront suffices
❖ Loss function L() computation is same as before (for BGD)
Too Big To Fit, scale-up vs.scale-out
When an application becomes too big or too complex to run efficiently
on a single server, there are some options:
1:migrate to a larger server, and buy bigger licenses–vertical scale up
2:distribute data+compute across multiple servers–horizontal scale out
The histories of MPI, Hadoop, Spark, Dask, etc., represent generations
of scale-out, which imply trade-offs both for the risks as well as the
Inherent overhead costs
Why Ray:
Machine learning is pervasive / Distributed computing is a necessity
Python is the default language for DS/ML
What is Ray?
A simple/general-purpose library for distributed computing
● An ecosystem of Python libraries (for scaling ML and more)
● Runs on laptop, public cloud, K8s, on-premise
A layered cake of functionality and capability for scaling ML workloads
Ray Core: Tasks / Actors / Objects
Ray AI Runtime is a scalable runtime/toolkit for end-to-end ML
applications.
Ray Basic Design Patterns
● Ray Parallel Tasks
○ Functions as stateless units of execution
○ Functions distributed across the cluster as tasks

● Ray Objects as Futures
○ Distributed (immutable objects) store in the cluster
○ Fetched when materialized
○ Enable massive asynchronous parallelism

● Ray Actors
○ Stateful service on a cluster
○ Enable Message passing

Scaling Design Patterns

(Circle: Compute; Square: Data)
Ray Task: A function remotely executed in a cluster
Python → Ray APIs:
Ray Task: A function remotely executed in a cluster
@ray.remote(num_cpus=2)
Def f(a,b):
Return a+b

f.remote(1,2)
Ray Actor: A class remotely executed in a cluster



@ray.remote(num_gpus=4)
Class HostActor:
Def __init__(self):
Self.num_devices = os.environ["CUDA_VISIBLE_DEVICES"]

Def f(self, output):
Return f”{output}{self.num_devices}”

Actor = HostActor.remote()
actor.f.remote(“hi”)
Dynamic task graph: build at runtime
ray.get() block: until result available

Distributed Applications with Ray:
ML Libraries (All using Ray core APIs & patterns)
● Ray AI Runtime ● Distributed scikit-learn/Joblib
● Distributed XGBoost on Ray ● Ray Multiprocess Pool
Ray provides generic platform for LLMs
Simplify orchestration and scaling:
● Spot instance support for data parallel training
● Easily spin up and run distributed workloads on any cloud
● Optimize CPUs/GPUs by pipelining w/ Ray Data
Inference and serving:
● Ability to support complex pipelines integrating business logic
● Ability to support multiple node serving
Training
● Integrates distributed training with distributed hyperparameter
tuning w/ ML frameworks

Ray Key Takeaways
● Distributed computing is a necessity & norm
● Ray’s vision: make distributed computing simple
○ Don’t have to be distributed programming expert
● Build your own disruptive apps & libraries with Ray
● Scale your ML workloads with Ray libraries (Ray AIR)
● Ray offers the compute substrate for Generative AI workloads
Introducing Data Parallelism
Basic Idea of Scalability: Split data file (virtually or physically)
and stage reads/writes of its pages between disk and DRAM
Data Parallelism: Partition large data file physically across
nodes/workers; within worker: DRAM-based or disk-based
❖ The most common approach to marrying parallelism and scalability
in data systems
❖ Generalization of SIMD and SPMD idea from parallel processors
to large-scale data and multi-worker/multi-node setting
❖ Distributed-memory vs Distributed-disk
3 Paradigms of Multi-Node Parallelism
Data parallelism is technically orthogonal to these 3 paradigms
but most commonly paired with shared-nothing
Shared-Nothing Data Parallelism

Data Parallelism in Other Paradigms

Data Partitioning Strategies
❖ Row-wise/horizontal partitioning is most common (sharding)
❖ 3 common schemes (given k nodes):
❖ Round-robin: assign tuple i to node i MOD k
❖ Hashing-based: needs hash partitioning attribute(s)
❖ Range-based: needs ordinal partitioning attribute(s)
❖ Tradeoffs:
❖ For Relational Algebra (RA) and SQL:

❖ Hashing-based most common in practice for RA/SQL
❖ Range-based often good for range predicates in RA/SQL

❖ But all 3 are often OK for many ML workloads (why?)
❖ Replication of partition across nodes (e.g., 3x) is common to
enable “fault tolerance” and better parallel runtime performance
Other Forms of Data Partitioning
❖ Just like with disk-aware data layout on single-node, we can
partition a large data file across workers in other ways too:

Cluster Architectures:
Manager-Worker Architecture:
❖ 1 (or few) special node called Manager (aka “Server” or archaic
“Master”); 1 or more Workers
❖ Manager tells workers what to do and when to talk to other nodes
❖ Most common in data systems (Dask, Spark, par. RDBMS, etc.)

Peer-to-Peer Architecture
❖ No special manager
❖ Workers talk to each other directly
❖ E.g., Horovod
❖ Aka Decentralized (vs Centralized)

Bulk Synchronous Parallelism (BSP)
❖ Most common protocol of data parallelism in data systems (e.g., in
parallel RDBMSs, Hadoop, Spark)
❖ Shared-nothing sharding + manager-worker architecture
1. Sharded data file on workers
2. Client gives program to manager (SQL query, ML training, etc.)
3. Manager divides first piece of work among workers
4. Workers work independently on self’s data partition (cross-talk can
happen if Manager asks)

5. Worker sends partial results to Manager
6. Manager waits till all k done
7. Go to step 3 for next piece

Speedup Analysis/Limits of of BSP
Speedup = Completion time given only 1 worker

—------------------------------------------------
Completion time given k (>1) workers

❖ Cluster overhead factors that hurt speedup:
❖ Per-worker: startup cost; tear-down cost
❖ On manager: dividing up the work; collecting/unifying partial
partial results from workers
❖ Communication costs: talk between manager-worker and across
workers (when asked by manager)
❖ Barrier synchronization suffers from “stragglers” (workers that fall
behind) due to skews in shard sizes and/or worker capacities

Quantifying Benefit of Parallelism

Distributed Filesystems
❖ Recall definition of file; distributed file generalizes it to a cluster of
networked disks and OSs
❖ Distributed filesystem (DFS) is a cluster-resident filesystem to

manage distributed files
❖ A layer of abstraction on top of local filesystems
❖ Nodes manage local data as if they are local files
❖ Illusion of a one global file: DFS APIs let nodes access data

sitting on other nodes
❖ 2 main variants: Remote DFS vs In-Situ DFS
❖ Remote DFS: Files reside elsewhere and read/written on
demand by workers
❖ In-Situ DFS: Files resides on cluster where workers exist

Network Filesystem (NFS)
❖ An old remote DFS (c. 1980s) with simple client-server
architecture for replicating files over the network
Network Filesystem (NFS)
❖ Main pro: simplicity of setup and usage

❖ But many cons:
❖ Not scalable to very large files
❖ Full data replication
❖ High contention for concurrent reads/writes
❖ Single-point of failure

Hadoop Distributed File System (HDFS)
❖ Most popular in-situ DFS (c. late 2000s); part of Hadoop; open
source spinoff of Google File system (GFS)
❖ Highly scalable; scales to 10s of 1000s of nodes, PB files
❖ Designed for clusters of cheap commodity nodes
❖ Parallel reads/writes of sharded data “blocks”
❖ Replication of blocks to improve fault tolerance
❖ Cons: Read-only + batchappend (no fine-grained updates/writes)

❖ NameNode’s roster maps data blocks to DataNodes/IPs
❖ A distributed file on HDFS is just a directory (!) with individual
filenames for each data block and metadata files
❖ HDFS has configurable parameters:
Parameter name Purpose Default value
Data block size Splitting data into chunks 128 MB
Replication factor Ensure data availability 3x
Data-Parallel Dataflow/Workflow
❖ Data-Parallel Dataflow: A dataflow graph with ops wherein each
operation is executed in a data-parallel manner
❖ Data-Parallel Workflow: A generalization; each vertex a whole
task/process that is run in a data-parallel manner
Note: In parallel environments like parallel RDBMSs and Spark:

Each of these extended relational ops have scalable data-parallel
All input tables implementations.

Distributed Computing Paradigms
Different paradigms and models used in distributed computing:
Batch processing: Breaking tasks into smaller sub-tasks that can be
processed independently.
Message passing: Communication between nodes through message
passing protocols like MPI.
Shared memory: Multiple nodes accessing a common memory space.
MapReduce: A programming model for processing large datasets in a
distributed manner.
Stream processing: Real-time processing of continuous data streams.
Distributed File Systems → like HDFS (Hadoop)
Fault Tolerance: With HDFS, the company stores multiple replicas of
the data across different nodes. If a node fails, the data is still accessible
from other replicas, ensuring fault tolerance and preventing data loss.
Scalability: As the company's data grows, they can add more nodes to
the Hadoop cluster and distribute the data across these nodes. HDFS
scales horizontally, allowing the company to accommodate the
increasing volume of data without compromising performance.
Data Locality: When processing the customer data and performing
analytics, HDFS ensures data locality by storing the data on the same
nodes where the computation is performed. This reduces data transfer
over the network and improves overall processing efficiency.
Challenges & considerations in distributed analysis
While dealing with large amounts of data the primary challenge is
that it cannot fit on a single machine.
Storage Tradeoff: Storing data entirely in memory yields better
performance but is expensive. Disk storage is cheaper but results in
lower performance.
Hybrid Caching: Combination of SSD flash disks and hard disks for
storing data subsets. Placement of data on appropriate storage medium
is crucial.
Distributing Data: Root-leaf approach for distributing data across
thousands of machines. Each leaf machine holds a portion of the data,
results merged at the root.



Latency Impact: Latency from the slowest machine affects overall
performance. Mitigating latency through optimization techniques is
essential.
Overhead in Data Transfer: Serialization, compression, and
encryption introduce overhead. File format overhead, decryption, and
decompression impact performance.
Hardware Support: Encryption at rest and in motion requires
hardware support. Hardware advancements crucial for efficient
distributed analysis.
Serialization and Interpretation: Data structures are serialized for
transmission over a wire. Receiving machine must interpret the
serialized data correctly.

Distributed Collaborative filtering
In the diagram, the process of making collaborative filtering distributed is
illustrated with two nodes (Node 1 and Node 2) as an example. Here's a
breakdown of the components:
1. User-Item Data: Represents the initial user-item interaction data used for
collaborative filtering.
2. Data Partitioning: The data is partitioned into subsets and distributed
across multiple nodes.
3. Local Similarity Computation: Each node independently computes local
similarities (e.g., cosine similarity) based on the user-item interactions
available on that node.
4. Data Exchange and Aggregation: The computed similarities are
exchanged and aggregated across the nodes to generate a global
similarity matrix.
5. Recommendation Generation: Each node utilizes the global similarity
matrix and the locally available user-item interactions to generate
personalized recommendations for its subset of users.
6. Result Integration and Final Recommendations: The recommendations
generated by each node are integrated to produce the final distributed
recommendations.
Language Models and Challenges in Distributed Training
1. Computational Resources: Large language models require immense
computational power, memory, and storage. Training and inference
across distributed systems necessitate significant hardware resources

2. Communication Overhead: In distributed training, coordinating
updates across multiple nodes introduces communication overhead.
Efficient communication protocols and optimized data exchange
mechanisms are essential.

3. Data Synchronization: Ensuring consistent model parameters and
synchronization of large amounts of data across nodes is a challenge.
In distributed inference, managing data consistency for parallel
processing can be complex.

4. Scalability: Scaling distributed training and inference to
accommodate growing model sizes and datasets is crucial.
Load balancing and resource allocation need to be optimized for
efficient scalability.

How to Parallelize GPTs?
The parallelization of the GPT architecture can be achieved by
utilizing techniques such as model parallelism and data parallelism. Let's discu
Model Parallelism: Model parallelism involves distributing the model
across multiple devices or machines. In the case of GPT, where the
model consists of stacked transformer layers, each layer can be
allocated to different devices. This allows for parallel computation of
different layers, reducing the overall training or inference time. Model
parallelism can be particularly useful when dealing with very large
models that cannot fit into a single device's memory.
Data Parallelism: Data parallelism involves dividing the data into
multiple subsets and processing them simultaneously on different
devices. In the context of GPT, the training data can be partitioned into
smaller batches, and each batch is processed by a separate device or
machine. The gradients calculated on each device are then
synchronized and aggregated to update the model parameters. Data
parallelism enables faster training by parallelizing the computation
across multiple devices.
Benefits of Distributed Computing for Large Language Models
Scalability: Distributed computing enables efficient scaling of
resources to handle large-scale training and inference workloads.
Speed: Parallel processing across multiple nodes reduces the time
required for training and inference tasks.
Fault tolerance: Distributed systems provide resilience by
replicating data and computations across multiple nodes, ensuring
uninterrupted operation even in the face of failures.
Real-world Applications
Language translation: Distributed computing facilitates the training
and serving of language translation models that can handle large
volumes of text.
Content generation: Distributed language models enable the
generation of coherent and contextually relevant content for various
applications, such as chatbots or content personalization.
Sentiment analysis: Large language models distributed across
multiple nodes can process and analyze vast amounts of text data to
derive sentiment insights.
Considerations and Challenges
Data synchronization: Ensuring consistency and synchronization of
data across distributed nodes.
Communication overhead: Efficient communication and coordination
between nodes to minimize latency and optimize performance.
Resource management: Proper allocation and management of
computational resources across the distributed system.
Parallel RDBMSs
❖ Parallel RDBMSs are highly successful and widely used
❖ Typically shared-nothing data parallelism
❖ Optimized runtime performance + enterprise-grade features:
❖ ANSI SQL & more
❖ Business Intelligence (BI) dashboards/APIs
❖ Transaction management; crash recovery
❖ Indexes, auto-tuning, etc.
❖ 4 new concerns of Web giants vs RDBMSs built for enterprises:
❖ Developability: Custom data models and computations hard to

program on SQL/RDBMSs; need for simpler APIs
❖ Fault Tolerance: Need to scale to 1000s of machines; need for

graceful handling of worker failure

❖ Elasticity: Need to be able to easily upsize or downsize cluster size
based on workload

❖ Cost: Commercial RDBMSs licenses too costly; hired own software
engineers to build custom new systems

A new breed of parallel data systems called Dataflow Systems jolted the DB
folks from being complacent!
What is MapReduce?
❖ A programming model for parallel programs on sharded data +
distributed system architecture
❖ Map and Reduce are terms from functional PL; software/data/ML
engineer implements logic of Map, Reduce
❖ System handles data distribution, parallelization, fault tolerance,
etc. under the hood
❖ Created by Google to solve “simple” data workload: index, store,
and search the Web!
❖ Google’s engineers started with MySQL! Abandoned it due to
reasons listed earlier (developability, fault tolerance, elasticity, etc.)
❖ Standard example: count word occurrences in a doc corpus
❖ Input: A set of text documents (say, webpages)
❖ Output: A dictionary of unique words and their counts
function map (String docname, String doctext) :

for each word w in doctext :
emit (w, 1)

function reduce (String word, Iterator partialCounts) :
sum = 0
for each pc in partialCounts :
sum += pc

emit (word, sum) (red: Part of MapReduce API)
How MapReduce Works

Benefits and Catch of MapReduce
❖ Goal: High-level functional ops to simplify data-intensive programs
❖ Key Benefits:
❖ Map() and Reduce() are highly general; any data types/structures;
great for ETL, text/multimedia
❖ Native scalability, large cluster parallelism
❖ System handles fault tolerance automatically
❖ Decent FOSS stacks (Hadoop and later, Spark)
❖ Catch: Users must learn “art” of casting program as MapReduce
❖ Map operates record-wise; Reduce aggregates globally
❖ But MR libraries now available in many PLs: C/C++, Java, Python,
R, Scala, etc.

Abstract Semantics of MapReduce
Map(): Process one “record” at a time independently
❖ A record can physically batch multiple data examples/tuples
❖ Dependencies across Mappers not allowed
❖ Emit 1 or more key-value pairs as output(s)
❖ Data types of input vs. output can be different
❖ Reduce(): Gather all Map outputs across workers sharing same key into
an Iterator (list)
❖ Apply aggregation function on Iterator to get final output(s)
❖ Input Split:
❖ Physical-level shard to batch many records to one file “block”
(HDFS default: 128MB?)
❖ User/application can create custom Input Splits
❖ First step: Transform text docs into relations and load: Part of the

ETL stage
Suppose we pre-divide each doc into words w/ schema: DocWords
(DocName, Word)
❖ Second step: a single, simple SQL query!
More MR Examples: Select Operation
❖ Input Split: Shard table tuple-wise
❖ Map(): On tuple, apply selection condition; if satisfies,

emit key-value (KV) pair with dummy key, entire tuple
as value

❖ Reduce():
❖ Not needed! No cross-shard aggregation here
❖ These kinds of MR jobs are called “Map-only” jobs
More MR Examples: Simple Agg
❖ Suppose it is algebraic aggregate (SUM, AVG, MAX, etc.)
❖ Input Split:
❖ Shard table tuple-wise
❖ Map():
❖ On agg. attribute, compute incr. Stats; emit pair with single
global dummy key and incr. stats as value

❖ Reduce():
❖ Since only one global dummy key, Iterator has all sufficient
stats to unify into global agg.

More MR Examples: GROUP BY Agg
❖ Assume it is algebraic aggregate (SUM, AVG, MAX, etc.)
❖ Input Split:
❖ Shard table tuple-wise
❖ Map():
❖ On agg. attribute, compute incr. Stats; emit pair with grouping
attribute as key and stats as value

❖ Reduce():
❖ Iterator has all suff. stats for a single group;
unify those to get result for that group
❖ Different reducers will output different groups’ results

More MR Examples: Matrix Sum of Squares
❖ Very similar to simple SQL aggregates
❖ Input Split:
❖ Shard table tuple-wise
❖ Map():
❖ On agg. attribute, compute incr. stats;
emit pair with single global dummy key
and stats as value

❖ Reduce():
❖ Since only one global dummy key,
Iterator has all sufficient stats to unify into global agg.

What is Hadoop then?
❖ FOSS system implementation with
→ MapReduce as programming model, and
→ HDFS as filesystem
❖ MR user API; input splits, data distribution, shuffling, and fault
tolerances handled by Hadoop under the hood
❖ Exploded in popularity in 2010s: 100s of papers, 10s of products
❖ A “revolution” in scalable+parallel data processing that took the
DB world by surprise
❖ But nowadays Hadoop largely supplanted by Spark
Apache Spark
❖ Dataflow programming model (subsumes most of Relational
Algebra; MR)
❖ Inspired by Python Pandas style of chaining functions
❖ Unified storage of relations, text, etc.; custom programs
❖ Custom design (and redesign) from scratch
❖ Tons of sponsors, gazillion bucks, unbelievable hype!
❖ Key idea vs Hadoop: exploit distributed memory to cache data
❖ Key novelty vs Hadoop: lineage-based fault tolerance
❖ Open-sourced to Apache; commercialized as Databricks
Distributed Architecture of Spark

Resilient Distributed Datasets
Key concept in Spark.
❖ RDD has been the primary user-facing API in Spark since its
inception. At the core an RDD is an immutable distributed
collection of elements of your data,
❖ partitioned across nodes in your cluster
❖ that can be operated in parallel with a low-level API that offers
transformations and actions.

❖ Good for dataset low-level transformation, actions and control.
❖ Good for unstructured data.
❖ Good for functional programming data manipulation.
❖ Not recommended for imposing a schema on your data.
❖ Lacks some optimization and performance benefits
Spark’s Dataflow Programming Model
Transformations are relational ops, MR, etc. as functions
Actions are what force computation; aka lazy evaluation
Spark DF API and SparkSQL
❖ Databricks now recommends SparkSQL/DataFrame API; avoid RDD AP
unless really needed!
❖ Key Reason: Automatic query optimization becomes more feasible

Query Optimization in Spark
❖ Common automatic query optimizations (from RDBMS world) are
now performed in Spark’s Catalyst optimizer:
❖ Projection pushdown: Drop unneeded columns early on
❖ Selection pushdown: Apply predicates close to base tables
❖ Join order optimization: Not all joins are equally costly
❖ Fusing of aggregates
Comparing Spark’s APIs



Spark-based Ecosystem of Tools

New Paradigm of Data “Lakehouse”
❖ Data “Lake”: Loose coupling of data file format and data/query
processing stack (vs RDBMS’s tight coupling); many frontends

References and More Material
❖ MapReduce/Hadoop:
❖ MapReduce: Simplified Data Processing on Large Clusters.
❖ Spark:
❖ Resilient Distributed Datasets: A Fault-tolerant Abstraction for

In-memory Cluster Computing.
Example: Batch Gradient Descent
❖ Very similar to algebraic SQL; vector addition
❖ Input Split: Shard table tuple-wise
❖ Map():
❖ On tuple, compute per-example gradient; add these across

examples in shard; emit partial sum with single dummy key
❖ Reduce():
❖ Only one global dummy key, Iterator has partial gradients; just

add all those to get full batch gradient.
Primer: K-Means Clustering
❖ Basic Idea: Identify clusters based on Euclidean distances;
formulated as an optimization problem
❖ Llyod’s algorithm: Most popular heuristic for K-Means
❖ Input: n x d examples/points
❖ Output: k clusters and their centroids
1. Initialize k centroid vectors and point-cluster ID assignment
2. Assignment step: Scan dataset and assign each point to a cluster
ID based on which centroid is nearest
3. Update step: Given new assignment, scan dataset again to
recompute centroids for all clusters
4. Repeat 2 and 3 until convergence or fixed # iterations
K-Means Clustering in MapReduce
❖ Input Split: Shard the table tuple-wise
❖ Assume each tuple/example/point has an ExampleID
❖ Need 2 jobs! 1 for Assignment step, 1 for Update step
❖ 2 external data structures needed for both jobs:
❖ Dense matrix A: k x d centroids; ultra-sparse matrix B: n x k
assignments
❖ A and B first broadcast to all Mappers via HDFS; Mappers can
read small data directly from HDFS files

❖ Job 1 read A and creates new B
❖ Job 2 reads B and creates new A
K-Means Clustering in MapReduce
❖ A: k x d centroid matrix; B: n x k assignment matrix
❖ Job 1 Map(): Read A from HDFS; compute point’s distance to all k
centroids; get nearest centroid; emit new assignment as output pair
(PointID, ClusterID)
❖ No Reduce() for Job 1; new B now available on HDFS
❖ Job 2 Map(): Read B from HDFS; look into B and see which cluster
point got assigned to; emit point as output pair (ClusterID, point
vector)
❖ Job 2 Reduce(): Iterator has all point vectors of a given ClusterID;
add them up and divide by count; got new centroid; emit output pair
as (ClusterID, centroid vector)
Building Stage of ML Lifecycle
❖ Perform model selection, i.e., convert prepared ML-ready data
to prediction function(s) and/or other analytics outputs
❖ What makes model building challenging/time-consuming?
❖ Heterogeneity of data sources/formats/types
❖ Configuration complexity of ML models
❖ Large scale of data
❖ Long training runtimes of some models
❖ Pareto optimization on criteria for application
❖ Evolution of data-generating process/application
❖ Perform model selection, i.e., convert prepared ML-ready data
to prediction function(s) and/or other analytics outputs
❖ Data scientist / ML engineer must steer 3 key activities that
invoke ML training and inference as sub-routines:

1. Feature Engineering (FE): Appropriate signals representation for
domain of prediction function.

2. Algorithm/Architecture Selection (AS): Choice of prediction
functions class (incl. artificial neural networks (ANN) architecture).

3. Hyper-parameter Tuning (HT): Model improvement
(accuracy, etc.) by configuring ML “knobs”
Model Selection Process
❖ Model selection is usually an iterative exploratory process with
human making decisions on FE, AS, and/or HT
❖ Increasingly, automation of some or all parts possible: AutoML

❖ Decisions on FE, AS, HT guided by many constraints/metrics:
prediction accuracy, data/feature types, interpretability, tool
availability, scalability, runtimes, fairness, legal issues, etc.
❖ Decisions are typically application-specific and dataset-specific;
recall Pareto surfaces and tradeoffs
Feature Engineering
❖ Converting prepared data into a feature vector representation for
ML training and inference
❖ Aka feature extraction, representation extraction, etc.
❖ Umbrella term for many tasks dep. on type of ML model trained:
1. Recoding and value conversions
2. Joins and/or aggregates
3. Feature interactions
4. Feature selection
5. Dimensionality reduction
6. Temporal feature extraction
7. Textual feature extraction and embeddings
8. Learned feature extraction in deep learning

1. Recoding and value conversions
❖ Common on relational/tabular data
❖ Typically needs some global column stats + code to reconvert each
tuple (example’s feature values)
Example:
Decision trees can use categorical features directly but GLMs support
only numeric features; need numerical vector such as one-hot
Encoded, weight of evidence / target encoding, integer encoding,
embedding (via additional DL model), etc
Example:
GLMs and ANNs need standardization (either mean/stdev or
min/max based) and decorrelation
Scaling global stats: How to scale mean/stdev/max/min?
Reconversion: Tuple-level function to modify number using stats.
How to scale?
Example:
Some models like Bayesian Networks or Markov Logic Networks
benefit from (or even need) binning/discretization of numerics
Scaling global stats: How to scale histogram computations?
Reconversion: Tuple-level function to convert number to bin ID
2. Joins and Aggregates
❖ Common on relational/tabular data
❖ Most real-world relational datasets are multi-table; require
key-foreign key joins, aggregation-and-key-key-joins, etc.
3. Polynomials and Feature Interactions
❖ Sometimes used on relational/tabular data, especially for high-bias
models like GLMs
❖ Pairwise is common; ternary is not unheard of
❖ No global stats, just a tuple-level function
❖ Popularity of this has reduced due to GBMs popularity for
tabular data, which encode nonlinearities and interactions as
part of the learning process.
4. Feature Selection
❖ Often used on high dimensional relational/tabular data
❖ Basic Idea: Instead of using whole feature set, use a subset
❖ Formulated as a discrete optimization problem
❖ NP-Hard in #features in general
❖ Many heuristics exist in ML/data mining; typically rely on some
information theoretic criteria
❖ Typically scaled as “outer loops” over training/inference
❖ Some ML users also prefer human-in-the-loop approach
5. Dimensionality Reduction
❖ Often used on relational/structured/tabular data
❖ Basic Idea: Transforms features to a different latent space
❖ Examples: Principal Component Analysis (PCA), Singular Value
Decomposition (SVD), Linear Discriminant Analysis (LDA), Matrix
factorization
❖ Feat. sel. preserves semantics of each feature but dim. red. typically
does not—combines features in “nonsensical” ways
❖ Scaling this is non-trivial! Similar to scaling individual ML training
algorithms (later)
6. Temporal Feature Extraction
❖ Many relational/tabular data have time/date
❖ Per-example reconversion to extract numerics/categoricals
❖ Sometimes global stats needed to calibrate time
❖ Complex temporal features studied in time series mining
Reconversion: Tuple-level function (many-to-one) to extract
numbers/categories
7. Textual Feature Extraction
❖ Many relational/tabular data have text columns; in NLP, whole
example is often just text
❖ Most classifiers cannot process text/strings directly
❖ Extracting numerics from text studied in text mining
Example:
Bag-of-words features: count number of times each word in a given
vocabulary arises; need to know vocabulary first
Scaling global stats: How to get vocabulary?
Reconversion: Tuple-level function to count words; look up index
❖ Knowledge Base-based: Domain-specific knowledge bases like
entity dictionaries (e.g., celebrity or chemical names) help extract
domain-specific features
❖ Embedding-based:
❖ Numeric vector for a text token; popular in NLP
❖ Offline training of function from string to numeric vector in

self-supervised way on large text corpus (e.g., Wikipedia);
embedding dimensionality is a hyper-parameter
❖ Pre-trained word embeddings (Word2Vec and GloVe) and
sentence embeddings (Doc2Vec) available off-the-shelf; to
scale, just use a tuple-level conversion function

8. Learned Feature Extraction in DL
❖ A big win of Deep Learning (DL) is no manual feature engineering on
unstructured data
❖ DL is not common on structured/tabular data, but growing in
popularity. See: https://arxiv.org/pdf/2110.01889.pdf
❖ DL is very versatile: almost any data type as input and/or output:
❖ Convolutional NNs (CNNs) over image tensors
❖ Recurrent NNs (RNNs) and Transformers over text

❖ Graph NNs (GNNs) over graph-structured data
❖ Neural architecture specifies how to extract and transform features
internally with weights that are learned
❖ Software 2.0: Buzzword for such “learned feature extraction” programs
vs old hand-crafted feature engineering
Hyper-Parameter Tuning
❖ Hyper-parameters: Knobs for an ML model or training algorithm to
control bias-variance tradeoff in a dataset-specific manner to make
learning effective
❖ Examples:
❖ GLMs: L1 or L2 regularizer to constrain weights
❖ All gradient methods: learning rate
❖ Mini-batch Stochastic Gradient Descent: batch size
❖ HT is an “outer loop” around training/inference
❖ Most common approach: grid search; pick set of values for each hyperpa
❖ Also common: random search to subsample from grid
❖ Complex AutoML heuristics exist too for HT, e.g., Bayesian
Algorithm Selection in “classical” ML
❖ Not much to say; ML user typically picks models/algorithms in
advance
❖ Best practice: first train more simple models (log. reg.) as baselines;
then try more complex models (XGBoost)
❖ Ensembles: Build diverse models and aggregate predictions. Even for
tabular data, ensembles yield better results and often win Kaggle
comps with a few % boost in performance.
❖ More critical in DL; neural arch. is inductive bias in classical ML
parlance; controls feature learning and bias-variance tradeoff
❖ Some applications: Many off-the-shelf pre-trained DL models to do
“transfer learning,” e.g., see models at HuggingFace.co
❖ Other applications: Swap pain of hand-crafted feature eng. for pain
of neural arch. eng.! Neural arch probably a better interview skill
Automated Model Selection / AutoML
❖ It depends. HT and most of FE already automated mostly in practice;
(neural) AS is often application-dictated
❖ AutoML tools/systems now aim to reduce data scientist’s work; or even
replace them?! ;)
Automated Model Selection / AutoML
Q: Can we automate the whole model selection process?
❖ Pros: Ease of use; lower human cost; easier to audit; improves ML

accessibility
❖ Cons: Higher resource cost; less user control; may waste domain

knowledge; may leave performance on the table
❖ Pareto-optima; hybrids possible
Major ML Model Families/Types
Generalized Linear Models (GLMs); from statistics
Bayesian Networks; inspired by causal reasoning
Decision Tree-based: CART, Random Forest, Gradient-Boosted
Trees (GBT), etc.; inspired by symbolic logic
Support Vector Machines (SVMs); inspired by psychology
Artificial Neural Networks (ANNs): Multi-Layer Perceptrons
(MLPs), Convolutional NNs (CNNs), Recurrent NNs (RNNs),
Transformers, etc.; inspired by brain neuroscience
Unsupervised: Clustering (e.g., K-Means), Matrix Factorization,
Latent Dirichlet Allocation (LDA), etc.
Scalable ML Training Systems
❖ Scaling ML training is involved and model type-dependent
❖ Orthogonal Dimensions of Categorization:

1. Scalability: In-memory libraries vs Scalable ML system
(works on larger-than-memory datasets)

2. Target Workloads: General ML library vs Decision treeoriented vs De
3. Implementation Reuse: Layered on top of scalable data
system vs Custom from-scratch framework

Model Serving / Deployment
❖ A trained/learned ML model is just a prediction function:f: Dx → Dy
❖ A major consideration is, online/realtime vs. offline/batch.
❖ In the offline scenario, serving a model is more trivial where it is
another processing function that we apply.
❖ In the online scenario, we become concerned with millisecond
latency for responses, setting up APIs, load balancing, and
monitoring.


