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Abstract

The recent development of text-to-image (T2I) models has unlocked numer-
ous possibilities for content creation, particularly by offering inspiration to
designers. However, current approaches often face challenges in accurately
following prompts to generate images. These challenges include arranging
non-overlapping objects in various spatial relationships and producing the
correct number of desired objects, both of which are crucial for many de-
sign tasks. We introduce Spatial-Overlap-Numeracy-1K (SON-1K), a com-
prehensive benchmark for text-to-image generation. This benchmark com-
prises 1,000 complex prompts spanning three subtasks: spatial relationships,
numeracy counts, and complex natural prompts. Alongside the benchmark,
we propose several evaluation metrics to assess compliance with the prompts
comprehensively. We also propose a new approach, the Language Model-
Guided Diffusion++ (LMDpp), enhancing the performance of the novel two-
stage Large LanguageModel (LLM)-grounded diffusionmodel pipeline (LMD).
We report experimental results of previous major T2I models and our en-
hanced LMDpp, along with its baseline on SON-1K, and provide an analysis
of our new metrics.

Website: https://weiyueli7.github.io/SON/
Code: https://github.com/weiyueli7/SON
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1 Introduction
Numerous studies in the domain of compositional text-to-image (T2I) generation have con-
centrated on specific challenges, including attribute binding (Feng et al. 2023a; Chefer et al.
2023) and the depiction of spatial relations (Gokhale et al. 2022; Wu et al. 2023), each in-
troducing separate benchmarks for method evaluation. Studies like (Huang et al. 2023;
Feng et al. 2023b; Cho, Zala and Bansal 2023; Bakr et al. 2023) have developed com-
prehensive benchmarks for assessing open-world compositional T2I generation. Despite
achieving high marks on these benchmarks, the latest advancements in T2I generation (Li
et al. 2023; Podell et al. 2023; Wang et al. 2023; OpenAI 2023b) offer a bright outlook
for the creation of diverse, high-quality images from naturally phrased prompts. However,
these methods frequently encounter difficulties in accurately positioning a precise count of
non-overlapping objects within correct spatial relationships, which is crucial for generating
designers’ sketches. See Appendix A.1 for more details.
To address these compositional T2I issues, we propose Spatial-Overlap-Numeracy-1K (SON-
1K) benchmark, consisting of three complex tasks: (1) Spatial Reasoning, with 400 prompts
where each prompt consists of n distinct objects and n − 1 spatial relationships, where
3≤ n≤ 10. (2) Numerical Reasoning, with 400 prompts in total, 200 of which have more
than two categories of objects with varying numbers. (3) Complex Natural Prompts, with
200 prompts in total aimed at simulating human-like input to generate complex synthetic
images. We also propose comprehensive metrics to assess the overall accuracy of the gen-
erated image in following the prompt input.
Researchers have started to use LLMs like ChatGPT (Ouyang et al. 2022) as tools for gen-
erating visual layouts using their reasoning capabilities (Wu et al. 2023; Feng et al. 2023b;
Lian et al. 2023) and integrate these into existing region-controlled pipelines, showcas-
ing state-of-the-art performance on various comprehensive compositional benchmarks. In
addition to these 2-stage pipelines, we propose a new approach named Language Model-
Guided Diffusion++ (LMDpp), utilizing various proven prompting techniques to enhance
the performance of Lian et al. (2023). Figure 1 showcases the example performance of our
LMDpp method.
In summary, our main contributions are:

• We introduce the SON-1K benchmark, offering more complex challenges in spatial
reasoning, numeracy, and natural language processing than current benchmarks,
along with comprehensive metrics that account for object overlapping.

• We enhance a two-stage LLM-grounded diffusion model pipeline through strategic
prompting and showcase the improvements of our LMDpp pipeline in object spatial
relationships, spacing, and numeracy tasks.

• Through benchmarking various state-of-the-art T2I pipelines, we conclude that using
LLMs as tools for 2-stage T2I pipelines has a promising future for generating images
that could inspire designers in their productions.
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Figure 1: Our proposed LMDpp method attains significant performance enhancement over
the baseline Stable Diffusion XL (Podell et al. 2023) on all tasks of our SON-1K benchmark.

2 Related Work
Text-to-image (T2I) generation is to create an image that matches a given textual descrip-
tion. Efforts to enhance the quality of the generated image include various network archi-
tectures and loss functions (Creswell et al. 2018). More recently, diffusion models have
attracted significant attention for achieving superior results in this generation task. DALL-
E (Ramesh et al. 2021) and DALL-E-3 (OpenAI 2023b), with its multimodal latent space,
demonstrates exceptional performance in image generation, surpassing previous models.
The latest open-source state-of-the-art Stable Diffusion Model (SDXL) (Podell et al. 2023)
is capable of producing high-quality images. However, these models encounter challenges
in precisely retaining positional and numerical information from the original description.
Works like TokenCompose (Wang et al. 2023) improve multi-category instance composition
by introducing the token-wise consistency terms between the image content and object seg-
mentation, and Attend-and-Excite pipeline (Chefer et al. 2023) guides the model to attend
all subject tokens in prompt, but the spatial and numerical problems still remain.
Large language models (LLMs) (Brown et al. 2020) has rapidly evolved in recent years.
Leveraging the robust capabilities of LLMs, (Cai et al. 2023) employs LLMs as Tool Makers
for problem-solving, and (Bai et al. 2023; Liu et al. 2023; Hu et al. 2023) utilize them as
visual question-answering tools. The exploration of Chain-of-Thoughts reasoning (Kojima
et al. 2022; Wei et al. 2022; Wang et al. 2022; Huang et al. 2022), prompt-engineering
(Gao, Fisch and Chen 2021; Liu et al. 2023; Ouyang et al. 2022; Wei et al. 2021; Sanh
et al. 2022), and query generation (Wang et al. 2024) techniques enable LLMs like ChatGPT
serve as good reasoner to undertake annotation and generation tasks (Zhang, Wang and
Shang 2023; Ding et al. 2022; Wang et al. 2024).
Image layout generation is an important task for helping various design tasks like indoor
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design (Ritchie, Wang and Lin 2019; Wang et al. 2019) or document layout capture (Zheng
et al. 2019), and the visual layouts, which reflect the compositions of a visual space (Luo
et al. 2020; Yang et al. 2021; Wang et al. 2022; Ma et al. 2023), have been widely studied.
Other layout generation models (Jyothi et al. 2019; Li et al. 2019; Gupta et al. 2021; Yang
et al. 2021; Kong et al. 2022) can be combined with region-controlled image generation
methods (Yang et al. 2023; Li et al. 2023) to improve image compositionality (Wu et al.
2023). However, these models are restricted to discrete categories or have limited reason-
ing skills for complicated text conditions. Recently, LayoutGPT (Feng et al. 2023b) and
LLM-Grounded Diffusion (LMD) (Lian et al. 2023) have both incorporated Large Language
Models (LLMs) as the reasoner and have introduced novel region-controlled methods to
enhance the diffusion model by grounding input information through input regularization
and providing layout structures to the diffusion models.
The compositional image generation benchmarks offer T2I pipelines for validating com-
positional issues like missing objects, incorrect attributes, and incorrect spatial relations.
The available benchmark VISOR (Gokhale et al. 2022), HRS-Bench (Bakr et al. 2023), and
T2I-CompBench (Huang et al. 2023) offers datasets for evaluating spatial relationships in
text-to-image generation. However, those benchmarks typically feature one or two objects
and a single spatial relationship between them, which does not simulate the complex scene
with multiple objects and their relations. Additionally, the benchmark NSR-1k, introduced
in LayoutGPT, and PaintSkills (Cho, Zala and Bansal 2023), are datasets with spatial and
counting annotations to assess layout generation quality. However, those datasets also only
include fewer than three different object categories.

3 SON-1K
Current state-of-the-art diffusion models and pipelines are capable of generating realistic
and diverse images from text prompts. However, they often struggle with prompts that
include complex spatial relationships, varying numbers of desired objects, and specific in-
structions such as preventing object overlap. While existing benchmarks do include spatial
and numeracy tasks, these compositional tasks are relatively simple, typically involving only
two distinct object categories. This simplicity enables current models to perform well, but
it does not accurately represent more complex real-life scenarios where users may want to
create images with more than two object categories, each requiring specific spatial relation-
ships and numeracy values.
To bridge the gap between current compositional benchmarking practices and real-life use
cases, we have developed the Spatial-Overlap-Numeracy-1K (SON-1K), which is designed
to assess the performance of models on comprehensive text-to-image generation tasks. It
comprises three datasets focused on spatial (400 prompts), numeracy (400 prompts), and
complex natural prompt (200 prompts) tasks. Each task features complex prompts that
involve more than two distinct object categories. These prompts were created by either
expanding upon existing benchmarks (Gokhale et al. 2022; Feng et al. 2023b; Lin et al.
2015) to includemore object categories and their corresponding relationships or by utilizing
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Figure 2: Overview of our SON-1k benchmark.

ChatGPT (OpenAI 2023a), followed by human selection for refinement. Wemake the source
code available to generate these data points, facilitating easy scaling. All possible object
categories in our benchmarks are from the MS-COCO (Lin et al. 2015) categories. The
distribution and visual representation of SON-1K is detailed in Figure 2. Additionally, we
have compiled Table 1 to showcase comparisons between our benchmark and the existing
works.

3.1 Spatial Relationships
Being able to strictly follow the spatial relationships between objects is a critical aspect of
the quality of synthetic images generated by T2I pipelines. The spatial dataset is designed
to assess the model’s performance in generating objects that adhere to the spatial relation-
ships specified in the prompt. While previous works focused on evaluating two objects
with one spatial relationship within a single prompt, we expanded upon VISOR by includ-
ing more objects (up to 10) and additional spatial relationships. This task comprises 400
data points. For any two objects, the options for spatial relationships are {“to the left of”,
“to the right of”, “above”, “below”}. The number of spatial relationships in a prompt ranges
from 2 to 9, corresponding to 3 to 10 objects with 50 prompts for each configuration. Thus,
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Table 1: Comparison of compositional text-to-image benchmarks.

Benchmark Prompts number and tasks Object categories Object categories/prompt
VISOR (Gokhale et al. 2022) 25,280 rel (spatial) 80 (MS-COCO) 2
HRS-Bench (Bakr et al. 2023) 2,000 rel (spatial) 700 2 (NEED TO CHECK)
T2I-CompBench (Huang et al. 2023) 2,000 rel (spatial),

1,000 complex 80 (MS-COCO) 2

PaintSkills (Cho, Zala and Bansal 2023) 2700 rel (spatial),
2160 numeracy 15 (MS-COCO) 1-2 (spatial)

1 (numeracy)
NSR-1K (Feng et al. 2023b) 283 rel (spatial),

762 numeracy 80 (MS-COCO) 1-2 (spatial)
1-2 (numeracy)

SON-1K
400 rel (spatial),
400 numeracy,
200 complex

80 (MS-COCO) 3-10 (spatial)
1-4 (numeracy)

for a prompt with n objects, it will have n− 1 spatial relationships Rel such that:

Rel(Oi, Oi+1) ∈ {“to the left of”, “to the right of”, “above”, “below”},
Oi, Oi+1 ∈ {MS-COCO Classes}∀i ∈ [1, n− 1].

For example, for n = 4, a prompt might be: “A realistic scene with 4 objects ([‘spoon’,
‘knife’, ‘microwave’, ‘apple’]): the spoon is below the knife; the knife is to the right of the
microwave; the microwave is above the apple.”

3.2 Numeracy
In addition to incorrect spatial relationships during the text-to-image (T2I) generation pro-
cess, generating an inaccurate number of objects represents another significant challenge
in T2I compositional tasks. The numerical reasoning dataset, which has 400 data points, is
crafted to evaluate a model’s ability to generate objects that match the precise quantities
specified in the prompt. Previous research has primarily concentrated on prompts involv-
ing only one category of objects in varying numbers (referred to as “one category”), two
categories of distinct objects in varying numbers (“two categories”), and prompts including
two categories of distinct objects but specifying the number for only one type, with the
quantity of the other type inferred through comparative terms like “fewer than,” “an equal
number of,” and “more than” (”comparison”). To introduce more intricate numerical rea-
soning challenges, we have expanded the scope of NSR-1K to include prompts with three
and four categories of distinct objects from MS-COCO, each in varying quantities.

3.3 Complex Natural Prompts
The complex natural prompts dataset is curated to simulate the kinds of descriptions indi-
viduals typically use when they aim to generate an image of a specific scene. Unlike struc-
tured tasks, these natural prompts do not adhere to a predetermined format. To achieve
a flow in the descriptions that closely resembles human communication, we created 400
data points for this task using ChatGPT-4, with potential objects drawn from the MS-COCO
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classes. Following the initial generation of prompts, we conducted a human evaluation
to assess the quality of these prompts. To maintain the integrity of our dataset and align
with our goal of creating complex natural tasks, we excluded any prompts containing fewer
than three objects. This filtering process has resulted in 200 high-quality complex natural
prompts that comprise our final dataset.

4 Evaluation Metrics
Intersection Over Union (IOU), also known as the Jaccard index, is a widely used evalua-
tion metric in object detection benchmarks. It quantifies the extent to which the predicted
bounding box aligns with the ground truth bounding box. In our work, we utilize IOU
scores for two distinct purposes. The first is to determine the overlap rate between two
bounding boxes. The second is to assess the alignment between the bounding boxes in the
layout generated by LMD and the bounding boxes in the final images detected by YOLO v8
(Jocher et al. 2022). Given two bounding boxes, A and B, the IOU score is computed using
the following equations (Rezatofighi et al. 2019):

IOU(A, B) =
|A∩ B|
|A∪ B| (1)

Given the centroids of bounding boxes (the coordinates of top-left and bottom-right are
[0,0] and [width, height] respectively) in the final images produced by YOLO v8 (xA, yA)
and (xB, yB), we move beyond simple comparisons of x or y coordinates for assessing the
spatial relationship between two bounding boxes. Instead, we incorporate the Euclidean
distance d along with sine and cosine values to achieve a more precise measurement of
spatial relationships. For instance, if the difference between yA and yB is significantly larger
than that between xA and xB, our metric prioritizes the above-below relationship over the
left-right relationship. Furthermore, we include the IOU score from equation (1) to ensure
that the overlap area between two bounding boxes is not excessively large. If the overlap
area between two bounding boxes is substantial, then the spatial relationship becomes less
meaningful. The detailed equation for our metric is defined as follows (Feng et al. 2023b;
Huang et al. 2023):

Rel(A, B) =



B above A if yB−yA
d ≥ sin(π/4) and IOU(A, B)< 0.1

B below A if yB−yA
d ≤ sin(−π/4) and IOU(A, B)< 0.1

B on the left of A if xB−xA
d < cos(3π/4) and IOU(A, B)< 0.1

B on the right of A if xB−xA
d > cos(π/4) and IOU(A, B)< 0.1

None if IOU(A, B)≥ 0.1

(2)

Given N spatial relationships, we propose assessing the spatial accuracy rate by comparing
the spatial relationship between two predicted bounding boxes in the final images produced
by YOLO v8, as calculated using Equation (2), with their respective ground truth spatial
relationships. The detailed equation of our metric is defined as follows:
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Spa-Acc= 1
N

∑
(Rel(a, b)PRED == Rel(a, b)GT ) (3)

To better assess the compliance between generated images and their corresponding prompts,
we have designed several new metrics to evaluate the images from three different perspec-
tives: object spatial accuracy, object overlap rate, and object numeracy accuracy.
We introduce the equation Spa-Lap, which incorporates spatial accuracy and overlap to
evaluate the predicted bounding boxes in the final images produced by YOLO v8. For each
score, we assign a weight between 0 and 1. If the generation task prioritizes spatial accuracy
over the overlap rate, then we will apply a higher weight to spatial accuracy. In our case,
we use w= 0.5, and the detailed equation of our metric is defined as follows:

Spa-Lap= (w) · (Spa-Acc) + (1− w) · (1−% Overlap) (4)

Where the overlap rate is calculated as:

% Overlap=
∑N

i=0 IOU (A, B)i

N
(5)

We denote the set of n (m) object classes in the ground truth (prediction) as CGT = c1, c2, ..., cn

(CPred = c′1, c′2, ..., c′m), where xc1
, xc2

, ..., xcn
(x ′c′1 , x ′c′2 , ..., x ′c′m) represent the number of objects

for each category accordingly. We define the Error Miss Ratio (EMR) as the percentage of
total detected objects that differ from the ground truth annotations:

EMR=
|∑ x ′c′k −
∑

xck
|∑

xck

(6)

We also introduce the equation Num-Lap, which incorporates numeracy accuracy and over-
lap to evaluate the predicted bounding boxes in the final images produced by YOLO v8.
The metric we use to evaluate numeracy accuracy is the EMR. The detailed equation of our
metric is defined as follows:

Num-Lap= (1− 1
N

N∑
i=0

(EMR)i) · (1−% Overlap) (7)

Then, we combine the equations Spa-Lap and Num-Lap into a comprehensive metric called
SON (Spatial-Overlap-Numeracy). For the spatial task, we take the average of the results
from Spa-Lap and Num-Lap. For numeracy and complex natural tasks, we only measure
Num-Lap since the main focus of numeracy and complex natural tasks is not spatial accu-
racy. The detailed equation of SON is defined as follows:

SON (Spatial-Overlap-Numeracy)=
¨

1
2 · Spa-Lap+ 1

2 ·Num-Lap if task is spatial
Num-Lap else (8)
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Figure 3: Pipeline of our LMDpp method.

5 Methods
We adopt the LLM-Grounded Diffusion pipeline (LMD) (Lian et al. 2023) as the backbone
for our LMDpp pipeline, shown in Figure 3. The overall pipeline structure of LMD consists
of two stages. In the first stage, LMD takes the user prompt as input and converts it into a
template with instructions and in-context examples. The LLM is then prompted to complete
the scene descriptions, following the style of the in-context examples. Finally, the LLM’s
output is parsed into a set of object-bounding boxes and a background caption. In the
second stage, a stable diffusion model generates the final images under the guidance of the
layout-grounded controller. Both the LLM and the Diffusion Model are frozen, which makes
LMD adaptable to different LLMs and Diffusion Models without needing to delve into their
training objectives.
However, as we apply the LMD pipeline to our SON-1K benchmarks, we find that there is
still considerable room for improvement in spatial and numeracy accuracy and in reducing
the overlap rate. For instance, as the number of objects increases, the positions of the
objects and the spatial relationships among them are not satisfactory. At the same time,
the overlap rate also significantly increases. As a result, we decide to develop a solution for
better image generation, meaning more precise spatial and numeracy accuracy and a lower
overlap rate for scenes with a varying number of objects, different object types, and spatial
relationships.
The essential part of our strategy is to utilize proven prompting techniques to provide better
guidance so that the LLM can adhere to the instructions. We apply two techniques for
prompt engineering: (1) inserting mathematical relationships to enforce the position and
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spatial relationship among objects and (2) incorporating the chain of thought to improve the
LLM’s reasoning on the mathematical relationship between bounding boxes’ coordinates.

5.1 Mathematical Relationship
We include eight mathematical relationships to teach the LLM how to determine the spatial
distance between two bounding boxes and whether there is overlap between them. More
specifically, we have four mathematical relationships, as shown in Figure 3, to compare the x
and y coordinates of objects’ centroids to help the LLM determine their spatial relationships.
For the overlapping part, we also incorporate four mathematical relations as conditions to
help the LLM understand under what circumstances two bounding boxes will contain no
overlap.

5.2 Chain of Thought
We redesign three in-context examples utilizing the chain of thought technique. For each
example, we adopt the same scene caption style as the one in our spatial benchmarks to
help the LLM perform more efficient few-shot learning (Brown et al. 2020). Furthermore,
for each example, we provide a step-by-step explanation to help the LLM understand why
the coordinates for each bounding box adhere to the scene description. Incorporating step-
by-step explanations for each mathematical relation will increase the LLM’s capabilities in
processing those equations, leading to images with better spatial accuracy and less overlap.
For complete in-context examples, see Appendix A.2

Figure 4: Comparison of numeracy & spatial accuracy among different templates of prompt.
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6 Results

6.1 Layout Generation on SON-1K
We compare our LMDpp against several other pipelines in both numeracy and spatial ac-
curacy: (1) Baseline-GPT3.5, which utilizes the LMD framework with GPT3.5 as the LLM;
(2) Math Relations-GPT3.5, Baseline-GPT3.5 with incorporated mathematical relations
in prompt; (3) Baseline (with GPT4); (4) Math Relations (with GPT4); (5) Math Re-
lations + CoT (simple examples) (with GPT4), which incorporates both mathematical
relationships and chain of thought into the prompts along with simple few-shot examples.
Based on Figure 4 (left), our model exceeds all other pipelines in numeracy accuracy, as
LMDpp incorporates both mathematical relations and chain of thought in the prompt, along
with well-designed few-shot examples.
Based on Figure 4 (right), our model surpasses all other pipelines in spatial accuracy with
4-9 objects present but falls short in scenes with 3 objects. We conjecture the reason may be
that a scene with 3 objects is not complex enough to fully showcase our model’s capabilities.
The performance between our model and others is quite close. As the number of present
objects increases, the overall trend of spatial accuracy decreases, but our model remains
the best.

Table 2: Evaluation results for Spatial Tasks. % Overlap (S1) indicates the overlap rate for
the layout image generated by the LLM in stage one. Spa-Acc (S1) indicates the spatial
accuracy for stage one. SON indicates the values measured by our metric SON.

Model LLM % Overlap (S1) Spa-Acc (S1) SON
LMD GPT4 0.023 0.695 0.531
LMDpp (ours) GPT4 0.016 (↓ 30.4%) 0.772 (↑ 11.1%) 0.540
LMD GPT3.5T 0.105 (↑ 356.5%) 0.416 (↓ 40.1%) 0.522
LMDpp (ours) GPT3.5T 0.071 (↑ 208.7%) 0.445 (↓ 36.0%) 0.538

Table 3: Evaluation results for Numeracy Tasks. Num-Recall (S1) indicates the numeracy
recall score for stage one. Num-Acc (S1) indicates the numeracy accuracy for stage one.

Model LLM Num-Recall (S1) Num-Acc (S1) % Overlap (S1) SON
LMD GPT4 0.983 0.938 0.071 0.060
LMDpp (ours) GPT4 0.991 (↑ 0.8%) 0.955 (↑ 1.8%) 0.014 (↓ 80.3%) 0.049
LMD GPT3.5T 0.965 (↓ 1.83%) 0.888 (↓ 5.3%) 0.056 (↓ 21.1%) 0.037
LMDpp (ours) GPT3.5T 0.967 (↓ 1.6%) 0.888 (↓ 5.3%) 0.158 (↑ 122.5%) 0.064
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Table 4: Evaluation results for Complex Prompts. EMR (S2) indicates the EMR score of the
final image generated by the diffusion model in stage two.

Model LLM % Overlap (S1) EMR (S2) SON
LMD GPT4 0.067 0.624 0.369
LMDpp (ours) GPT4 0.036 (↓ 46.3%) 0.537 (↓ 13.9%) 0.454
LMD GPT3.5T 0.119 (↑ 77.6%) 0.646 (↑ 3.5%) 0.344
LMDpp (ours) GPT3.5T 0.150 (↑ 123.9%) 0.681 (↑ 9.1%) 0.311

6.2 Image Generation on SON-1K
In Tables 2, 3, and 4, we compare our LMDpp pipeline against the baseline LMD pipeline
in terms of overlap rate, spatial accuracy, numeracy recall & accuracy for stage 2, and EMR
score and SON for stage 2. In addition to GPT4, we also include the results of using GPT3.5-
turbo as part of our ablation study.
Spatial Task: Based on Table 2, our model LMDpp outperforms the baseline in % Overlap
(S1), Spa-Acc (S1), and SON score. This trend is maintained as we switch our LLM from
GPT4 to GPT3.5-turbo.
Numeracy Task: Based on Table 3, our model LMDpp outperforms the baseline in Num-
Recall (S1), Spa-Acc (S1), and % Overlap (S1). This trend is maintained as we switch our
LLM from GPT4 to GPT3.5-turbo, except for the % Overlap (S1). We conjecture that this is
due to the limited token size of GPT3.5-turbo. Our refined prompt for LMDpp is significantly
longer than the one used for LMD. If GPT3.5-turbo cannot take the full prompt, then the
incomplete refined prompt will be confusing for the LLM. Also, we observe that LMDpp with
GPT4 achieves a lower SON score than LMDpp with GPT3.5-turbo. We conjecture that it
could be that GPT-3.5 has been unintentionally optimized for certain types of image-related
tasks or prompts during training.
Complex Natural Task: Based on Table 4, our model LMDpp outperforms the baseline in
% Overlap (S1), EMR (S2), and SON score. This trend is completely flipped as we switch
our LLM from GPT4 to GPT3.5-turbo. Similarly, we conjecture that the limited token size
of GPT3.5-turbo could be the essential reason, as we discussed earlier.

Table 5: Comparison between LMDpp with other T2I pipelines. Spa-Acc (S2) indicates the
spatial accuracy for stage two. % Overlap (S2) indicates the overlap rate for stage two.

Model Spa-Acc (S2) EMR (S2) % Overlap (S2) SON
LMD 0.145 0.492 0.018 0.531
LMDpp (ours) 0.170 (↑ 17.2%) 0.485 (↓ 1.4%) 0.020 (↑ 11.1%) 0.540
GLIGEN 0.059 (↓ 59.3%) 0.580 (↑ 17.9%) 0.030 (↑ 66.7%) 0.455
SDXL 0.041 (↓ 71.7%) 0.597 (↑ 21.3%) 0.015 (↓ 16.6%) 0.461
TokenCompose 0.020 (↓ 86.2%) 0.588 (↑ 19.5%) 0.061 (↑ 238.8%) 0.433
DALL-E-3 0.182 (↑ 25.5%) 0.300 (↓ 39.0%) 0.013 (↓ 27.8%) 0.638
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6.3 Pipeline Comparison
In Table 5, we compare our LMDpp pipeline against several others in Spa-Acc (S2), EMR
(S2), % Overlap (S2), and SON score: (1) Original LMD Pipeline; (2) GLIGEN; (3) SDXL;
(4) TokenCompose; (5) DALL-E-3, where SDXL, TokenCompose, and DELL-E-3 directly
take the scene prompt and generate the image.
Based on the results, DALL-E-3 outperforms all other pipelines, including LMD & LMDpp
with layout image support, in Spa-Acc (S2), EMR (S2), and % Overlap (S2). This is ex-
pected because DALL-E-3 benefits significantly from a vast and diverse training dataset
curated by OpenAI, which all open-source diffusion models have no access to. Besides that,
LMDpp does outperform all open-source pipelines in Spa-Acc (S2), EMR (S2), and SON
scores. However, it falls short in % Overlap (S2) compared to the SDXL framework. We
conjecture that one possible reason is that our refined prompt is long, which could some-
times make the LLM hallucinate. Also, the layout-grounded controller could confuse stable
diffusion models during the image generation process compared with directly generating
images based on the text prompt.

7 Discussion and Conclusion
We introduce SON-1K, a comprehensive compositional text-to-image benchmark focusing
on spatial relationships (400), numerical reasoning (400), and complex prompts (200),
along with new metrics that consider object overlap in evaluation. These aim to address
issues in compositional T2I generation and inspire designers in production. We provide
the source code to facilitate the easy scaling of the dataset size, enabling a more compre-
hensive comparison between existing models. Additionally, we introduce a new method,
LMDpp, which enhances the performance of the two-stage LMD pipeline through prompt-
ing techniques. Our study demonstrates that this enhanced two-stage technique surpasses
all existing open-source T2I pipelines, while DALL-E-3 exhibits the best performance. This
sheds light on future improvements, focusing on developing novel techniques for region
control in diffusion models to generate more realistic and high-quality images, bringing us
one step closer to achieving DALL-E-3’s state-of-the-art performance.
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A.1 Why is Non-Overlapping Important?

(a) Book for Children (b) 2D Floor Plan Design

Figure A 1: Children’s book and 2D floor plan design (Etsy 2024; Archicgi 2019).

Non-overlapping objects are a crucial requirement for many real-world design tasks. For
instance, educational books aimed at helping young children learn to read through pictures
necessitate clear separation between objects to facilitate easy interpretation and knowledge
absorption. Similarly, 2D-floor plan designs demand distinct spaces for each piece of furni-
ture to avoid a cluttered appearance, ensuring that the layout remains accessible and easy
to understand for viewers. By enhancing the understanding of prompts that specify non-
overlapping objects, we can provide a wealth of inspiration for designers in their practical
work.

A.2 Prompts for Layout Generation of LMDpp

We list our LLM prompts in Table A 1 and our in-context examples in Tables A 2 and A 3.
In the prompt header, we include instructions on the constraints related to object overlap,
spatial relationships, and numeracy. Additionally, we provide explanations onwhy the given
layouts are mathematically sensible in the in-context examples, thereby enabling the LLM
to reason and design the most effective layout bounding boxes within its capabilities.
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Table A 1: LMDpp prompt header. We use a fixed prompt header for layout generation.

1 You are an intelligent bounding box generator. I will provide you with a description
of a photo, scene, or painting. Your task is to generate the bounding boxes for
the objects mentioned in the description and a background prompt describing the
scene. The images are of size 512x512. The top-left corner has coordinates [0, 0].
The bottom-right corner has coordinates [512, 512]. The bounding boxes should not
overlap or go beyond the image boundaries. Each bounding box should be in the
format of (object name, [top-left x coordinate, top-left y coordinate, box width,
box height]) and should not include more than one object.

2 To prevent overlap, for any two boxes (box1 and box2), the condition (x1 + w1 <= x2)
or (x2 + w2 <= x1) or (y1 + h1 <= y2) or (y2 + h2 <= y1) must be met.

3 Furthermore, if the description uses spatial keywords (’left’, ’right’, ’above’,
’below’), the positioning of the bounding boxes must reflect these relationships
accurately. This means adjusting the centroids of the boxes (cx1, cy1 for box1;
cx2, cy2 for box2) so that: cx1 < cx2 if Object A is to the left of B; cx1 > cx2
if A is to the right of B; cy1 < cy2 if A is above B; and cy1 > cy2 if A is below
B. Centroids are calculated as cx = x + w//2 and cy = y + h//2.

4 Objects defined within the bounding boxes should not be repeated in the scene’s
background description. Exclude any non-relevant or omitted objects from this
background narrative. Use ”A realistic scene” as the background prompt if no
background is given in the prompt. If needed, you can make reasonable guesses.
Please refer to the example below for the desired format.

Table A 2: LMDpp in-context example 1. We use fixed in-context examples for layout gen-
eration.

1 <Scene One Begins>
2 Caption: A white background with 3 objects ([’bicycle’, ’boat’, ’laptop’]): the

bicycle is below the boat; the boat is above the laptop.
3 Objects: [(’bicycle’, [150, 300, 200, 150]), (’boat’, [150, 150, 200, 100]),

(’laptop’, [150, 50, 200, 75])]
4 Background prompt: A white background
5 Negative prompt:
6 <Scene One Ends>
7 <Begin Explanation>
8 Why does Scene One’s layout have no overlapping and adhere to the caption’s

description of spatial relationships? Please explain.
9 For every bounding box (x, y, w, h), max(x + w, y + h) < 512, so that every object is

within the 512x512 size.
10 For every two boxes with coordinates (x1, y1, w1, h1) and (x2, y2, w2, h2), the

condition (x1 + w1 <= x2) or (x2 + w2 <= x1) or (y1 + h1 <= y2) or (y2 + h2 <= y1)
is met (e.g. for boxes of ’boat’ and ’laptop, x2 + w2 = 150 + 200 = 350 <= 350 =
x1), so there is no overlapping between each object.

11 For every two objects A, B with coordinates (xa, ya, wa, ha) and (xb, yb, wb, hb) and
a spatial relationship Rel(A, B), their spatial relationship is met (e.g. for
boxes of ’bicycle’ and ’boat’, the centroids for the bicycle is [150+200//2,
300+150//2] = [250, 375] and the centroid for the boat is [150+200//2, 150+100//2]
= [250, 200]. Since Rel(bicycle, boat) is “”below and 375 > 200, the two objects
have the correct spatial relationship as described).

12 <End Explanation>

A2



Table A 3: LMDpp in-context examples continued.

1 <Scene Two Begins>
2 Caption: A white background with 4 objects ([’elephant’, ’toothbrush’, ’microwave’,

’handbag’]): the elephant is below the toothbrush; the toothbrush is to the right
of the microwave; the microwave is to the right of the handbag.

3 Objects: [(’elephant’, [150, 300, 200, 150]), (’toothbrush’, [300, 150, 50, 150]),
(’microwave’, [200, 50, 100, 100]), (’handbag’, [50, 50, 100, 100])]

4 Background prompt: A white background
5 Negative prompt:
6 <Scene Two Ends>
7 <Begin Explanation>
8 Why does Scene Two’s layout have no overlapping and adhere to the caption’s

description of spatial relationships? Please explain.
9 For every bounding box (x, y, w, h), max(x + w, y + h) < 512, so that every object is

within the 512x512 size.
10 For every two boxes with coordinates (x1, y1, w1, h1) and (x2, y2, w2, h2), the

condition (x1 + w1 <= x2) or (x2 + w2 <= x1) or (y1 + h1 <= y2) or (y2 + h2 <= y1)
is met (e.g. for boxes of ’elephant’ and ’handbag’, x2 + w2 = 50 + 100 = 150 <=
150 = x1), so there is no overlapping between each object.

11 For every two objects A, B with coordinates (xa, ya, wa, ha) and (xb, yb, wb, hb) and
a spatial relationship Rel(A, B), their spatial relationship is met (e.g. for
boxes of ’toothbrush’ and ’microwave’, the centroids for the toothbrush are
[300+150//2, 150+150//2] = [375, 225] and the centroids for the microwave are
[200+100//2, 50+100//2] = [250, 100]. Since Rel(toothbrush, microwave) is “”right
and 225 > 100, the two objects have the correct spatial relationship as described).

12 <End Explanation>
13 <Scene Three Begins>
14 Caption: A white background with 5 objects ([’stop sign’, ’sink’, ’clock’, ’tennis

racket’, ’couch’]): the stop sign is below the sink; the sink is to the left of
the clock; the clock is below the tennis racket; the tennis racket is to the left
of the couch.

15 Objects: [(’stop sign’, [150, 300, 80, 80]), (’sink’, [150, 200, 80, 80]), (’clock’,
[250, 200, 80, 80]), (’tennis racket’, [250, 100, 80, 80]), (’couch’, [350, 100,
120, 80])]

16 Background prompt: A white background
17 Negative prompt:
18 <Scene Three Ends>
19 <Begin Explanation>
20 Why does Scene Three’s layout have no overlapping and adhere to the caption’s

description of spatial relationships? Please explain.
21 For every bounding box (x, y, w, h), max(x + w, y + h) < 512, so that every object is

within the 512x512 size.
22 For every two boxes with coordinates (x1, y1, w1, h1) and (x2, y2, w2, h2), the

condition (x1 + w1 <= x2) or (x2 + w2 <= x1) or (y1 + h1 <= y2) or (y2 + h2 <= y1)
is met (e.g. for boxes of ’clock’ and ’couch’, y2 + h2 = 100 + 80 = 180 <= 200 =
y1), so there is no overlapping between each object.

23 For every two objects A, B with coordinates (xa, ya, wa, ha) and (xb, yb, wb, hb) and
a spatial relationship Rel(A, B), their spatial relationship is met (e.g. for
boxes of ’stop sign’ and ’sink’, the centroids for the stop sign is [150+80//2,
300+80//2] = [190, 340] and the centroid for the sink is [150+80//2, 200+80//2] =
[190, 240]. Since Rel(stop sign, sink) is “”below and 340 > 240, the two objects
have the correct spatial relationship as described).

24 <End Explanation>
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